444 research outputs found

    Environmental changes and radioactive tracers

    Get PDF

    Determination of the spin Hall angle, spin mixing conductance and spin diffusion length in Ir/CoFeB for spin-orbitronic devices

    Full text link
    Iridium is a very promising material for spintronic applications due to its interesting magnetic properties such as large RKKY exchange coupling as well as its large spin-orbit coupling value. Ir is for instance used as a spacer layer for perpendicular synthetic antiferromagnetic or ferrimagnet systems. However, only a few studies of the spintronic parameters of this material have been reported. In this paper, we present inverse spin Hall effect - spin pumping ferromagnetic resonance measurements on CoFeB/Ir based bilayers to estimate the values of the effective spin Hall angle, the spin diffusion length within iridium, and the spin mixing conductance in the CoFeB/Ir bilayer. In order to have reliable results, we performed the same experiments on CoFeB/Pt bilayers, which behavior is well known due to numerous reported studies. Our experimental results show that the spin diffusion length within iridium is 1.3 nm for resistivity of 250 nΩ\Omega.m, the spin mixing conductance geffg_{eff}^{\uparrow \downarrow} of the CoFeB/Ir interface is 30 nm2^{-2}, and the spin Hall angle of iridium has the same sign than the one of platinum and is evaluated at 26% of the one of platinum. The value of the spin Hall angle found is 7.7% for Pt and 2% for Ir. These relevant parameters shall be useful to consider Ir in new concepts and devices combining spin-orbit torque and spin-transfer torque.Comment: 8 pages, 4 figure

    Noninvasive electrocardiographic imaging of dynamic atrioventricular delay programming in a patient with left bundle branch block

    Get PDF
    Introduction The response to cardiac resynchronization therapy (CRT) is determined by various factors, including left ventricular (LV) lead location, atrioventricular (AV) delay, and inter-/intraventricular delays. Advances in quadripolar lead technology and device algorithms have improved patient response, yet selection of optimal settings remains challenging. Studies have shown acute improvement in electrical synchrony with manual AV optimization by fusion optimized intervals1,2; automated device algorithms, for example AdaptivCRT (Medtronic, Minneapolis, MN),3 SmartDelay (Boston Scientific, Marlborough, MA),4 and SyncAVTM (Abbott, Sylmar, CA)5; and pacing from multiple LV lead electrodes with MultiPoint Pacing (MPP).6,7 The aim of this clinical case report was to evaluate the acute benefits of SyncAV Plus in the new-generation, Bluetooth-enabled GallantTM CRT device (Abbott, Sylmar, CA). SyncAV Plus continually programs the paced AV delay shorter than the intrinsic PR interval by a programmable offset (% of PR duration) to synchronize intrinsic and ventricular paced activation wavefronts. Twelve-lead electrocardiogram (ECG) and noninvasive electrocardiographic imaging (ECGi) epicardial mapping analyses were performed to characterize the impact of SyncAV Plus on electrical synchrony during a range of CRT programming strategies, including biventricular (BiV) pacing, MPP, LV-only pacing, and LV-only pacing with MPP

    Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis

    Get PDF
    Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1GFP/mCh mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2. Moreover, following isolation of preleukemic hematopoietic stem and progenitor cells irradiated in their native microenvironment, we identified the presence of Sfpi1 point mutations within a subpopulation of these preleukemic cells expanding rapidly (increasing from 6% to 55% in 21 days in peripheral blood in one case), hence identifying for the first time the presence of such cells within a living animal. Importantly, we also report a previously undescribed gender difference in the phenotype of the preleukemic cells and leukemia, suggesting a gender imbalance in the radiation-induced leukemic target cell. In conclusion, we provide novel insights into the sequence of molecular events occurring during the (radiation-induced) leukemic clonal evolution

    Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure

    Full text link
    We analyze both experimentally (where possible) and theoretically from first-principles the dielectric tensor components and crystal structure of five classes of Pbnm perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high-K dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared-active. We find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information: http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or http://www.physics.rutgers.edu/~sinisa/highk/supp.pd

    Long term conservation of electrical synchrony by multipoint pacing with dynamic atrioventricular delays

    Get PDF
    Introduction Automatic adjustment of atrioventricular delay (AVD) with SyncAV has been shown to improve electrical synchronization. However, the long term effects of SyncAV optimization on electrical synchrony are unknown. Purpose Evaluate the effect of SyncAV programming on 6-month (6mo) QRS duration during biventricular (BiV) and left ventricle only MultiPoint Pacing (MPP). Methods Patients with LBBB and QRS duration (QRSd) ≥ 150 ms scheduled for CRT-P/D device implantation with quadripolar LV lead were enrolled in this prospective study. QRSd was measured post-implant from 12-lead surface ECG by blinded experts during the following pacing modes: intrinsic conduction, MPP (MPP=RV+LV1+LV2) and LV-only MPP (LVMPP=LV1+LV2). For each mode, SyncAV was enabled (e.g. MPP+SyncAV) with the patient-tailored SyncAV offset that minimized QRSd. Patients were then randomized 1:1 to receive MPP+SyncAV or LVMPP+SyncAV with the optimal offset identified at implant, and QRSd was re-evaluated at the 6mo follow-up. Results Fifty-nine patients (72% male, 41% ischemic, 26% ejection fraction, 166 ms intrinsic QRSd) completed device implant and QRSd assessment. Relative to intrinsic conduction at implant, the MPP+SyncAV group (n=30) had a QRSd reduction of 26% at implant (162 to 122 ms, p<0.001), and 20% at 6mo (162 to 130 ms, p<0.001). The LVMPP+SyncAV group (n=29) had a QRSd reduction of 24% at implant (165 to 128 ms, p<0.001), and 15% at 6mo (165 to 140 ms, p<0.001). In the MPP+SyncAV group, 28/30 (93%) of patients had more than 10% reduction in QRSd with respect to intrinsic at implant, with 27/30 (90%) maintaining this trend at 6 mo follow up. With LVMPP+SyncAV pacing, only 25/29 (86%) of patients had more than 10% reduction in QRSd with respect to intrinsic at implant, and this reduced to 18/29 (62%) maintaining this trend at 6 mo follow up. Conclusion MPP combined with SyncAV significantly improved acute electrical synchrony at implant in CRT patients with LBBB, as assessed by QRSd reduction. Significant QRSd reduction was maintained at 6 months post-implant by both biventricular and LV-only MPP configurations

    Telomere Length Shows No Association with BRCA1 and BRCA2 Mutation Status

    Get PDF
    This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy at time of enrolment and blood donation, 21 of whom have developed prostate cancer whilst on study. The second group consisted of 283 female BRCA1/2 mutation carriers and controls (mean age 48 years), half of whom had been diagnosed with breast cancer prior to enrolment. TL was quantified by qPCR from DNA extracted from peripheral blood lymphocytes. Weighted and unweighted Cox regressions and linear regression analyses were used to assess whether TL was associated with BRCA1/2 mutation status or cancer risk. We found no evidence for association between developing cancer or being a BRCA1 or BRCA2 mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don't support the previous finding of association between hereditary breast cancer and shorter TL
    corecore