212 research outputs found

    On-Shell Recursion Relations for Generic Theories

    Get PDF
    We show that on-shell recursion relations hold for tree amplitudes in generic two derivative theories of multiple particle species and diverse spins. For example, in a gauge theory coupled to scalars and fermions, any amplitude with at least one gluon obeys a recursion relation. In (super)gravity coupled to scalars and fermions, the same holds for any amplitude with at least one graviton. This result pertains to a broad class of theories, including QCD, N=4 SYM, and N=8 supergravity.Comment: 19 pages, 3 figure

    Massive amplitudes on the Coulomb branch of N=4 SYM

    Full text link
    We initiate a systematic study of amplitudes with massive external particles on the Coulomb-branch of N=4 super Yang Mills theory: 1) We propose that (multi-)soft-scalar limits of massless amplitudes at the origin of moduli space can be used to determine Coulomb-branch amplitudes to leading order in the mass. This is demonstrated in numerous examples. 2) We find compact explicit expressions for several towers of tree-level amplitudes, including scattering of two massive W-bosons with any number of positive helicity gluons, valid for all values of the mass. 3) We present the general structure of superamplitudes on the Coulomb branch. For example, the n-point "MHV-band" superamplitude is proportional to a Grassmann polynomial of mixed degree 4 to 12, which is uniquely determined by supersymmetry. We find explicit tree-level superamplitudes for this MHV band and for other simple sectors of the theory. 4) Dual conformal generators are constructed, and we explore the dual conformal properties of the simplest massive amplitudes. Our compact expressions for amplitudes and superamplitudes should be of both theoretical and phenomenological interest; in particular the tree-level results carry over to truncations of the theory with less supersymmetry.Comment: 29 pages, 1 figur

    Generating MHV super-vertices in light-cone gauge

    Full text link
    We constructe the N=1\mathcal{N}=1 SYM lagrangian in light-cone gauge using chiral superfields instead of the standard vector superfield approach and derive the MHV lagrangian. The canonical transformations of the gauge field and gaugino fields are summarised by the transformation condition of chiral superfields. We show that N=1\mathcal{N}=1 MHV super-vertices can be described by a formula similar to that of the N=4\mathcal{N}=4 MHV super-amplitude. In the discussions we briefly remark on how to derive Nair's formula for N=4\mathcal{N}=4 SYM theory directly from light-cone lagrangian.Comment: 25 pages, 7 figures, JHEP3 style; v2: references added, some typos corrected; Clarification on the condition used to remove one Grassmann variabl

    R^4 counterterm and E7(7) symmetry in maximal supergravity

    Get PDF
    The coefficient of a potential R^4 counterterm in N=8 supergravity has been shown previously to vanish in an explicit three-loop calculation. The R^4 term respects N=8 supersymmetry; hence this result poses the question of whether another symmetry could be responsible for the cancellation of the three-loop divergence. In this article we investigate possible restrictions from the coset symmetry E7(7)/SU(8), exploring the limits as a single scalar becomes soft, as well as a double-soft scalar limit relation derived recently by Arkani-Hamed et al. We implement these relations for the matrix elements of the R^4 term that occurs in the low-energy expansion of closed-string tree-level amplitudes. We find that the matrix elements of R^4 that we investigated all obey the double-soft scalar limit relation, including certain non-maximally-helicity-violating six-point amplitudes. However, the single-soft limit does not vanish for this latter set of amplitudes, which suggests that the E7(7) symmetry is broken by the R^4 term.Comment: 33 pages, typos corrected, published versio

    Process evaluation for complex interventions in primary care: understanding trials using the normalization process model

    Get PDF
    Background: the Normalization Process Model is a conceptual tool intended to assist in understanding the factors that affect implementation processes in clinical trials and other evaluations of complex interventions. It focuses on the ways that the implementation of complex interventions is shaped by problems of workability and integration.Method: in this paper the model is applied to two different complex trials: (i) the delivery of problem solving therapies for psychosocial distress, and (ii) the delivery of nurse-led clinics for heart failure treatment in primary care.Results: application of the model shows how process evaluations need to focus on more than the immediate contexts in which trial outcomes are generated. Problems relating to intervention workability and integration also need to be understood. The model may be used effectively to explain the implementation process in trials of complex interventions.Conclusion: the model invites evaluators to attend equally to considering how a complex intervention interacts with existing patterns of service organization, professional practice, and professional-patient interaction. The justification for this may be found in the abundance of reports of clinical effectiveness for interventions that have little hope of being implemented in real healthcare setting

    Design and Synthesis of a Quintessential Self-Transmissible IncX1 Plasmid, pX1.0

    Get PDF
    DNA exchange in bacteria via conjugative plasmids is believed to be among the most important contributing factors to the rapid evolution- and diversification rates observed in bacterial species. The IncX1 plasmids are particularly interesting in relation to enteric bacteria, and typically carry genetic loads like antibiotic resistance genes and virulence factors. So far, however, a ā€œpureā€ version of these molecular parasites, without genetic loads, has yet to be isolated from the environment. Here we report the construction of pX1.0, a fully synthesized IncX1 plasmid capable of horizontal transfer between different enteric bacteria. The designed pX1.0 sequence was derived from the consensus gene content of five IncX1 plasmids and three other, more divergent, members of the same phylogenetic group. The pX1.0 plasmid was shown to replicate stably in E. coli with a plasmid DNA per total DNA ratio corresponding to approximately 3ā€“9 plasmids per chromosome depending on the growth phase of the host. Through conjugation, pX1.0 was able to self-transfer horizontally into an isogenic strain of E. coli as well as into two additional species belonging to the family Enterobacteriaceae. Our results demonstrate the immediate applicability of recent advances made within the field of synthetic biology for designing and constructing DNA systems, previously existing only in silica

    Yang-Mills amplitude relations at loop level from non-adjacent BCFW shifts

    Full text link
    This article studies methods to obtain relations for scattering amplitudes at the loop level, with concrete examples at one loop. These methods originate in the analysis of large so-called Britto-Cachazo-Feng-Witten shifts of tree level amplitudes and loop level integrands. In particular BCFW shifts for particles which are not color adjacent and some particular generalizations of this situation are analyzed in some detail in four and higher dimensions. For generic non-adjacent shifts our results are independent of loop order for integrands and hold for generic minimally coupled gauge theories with possible scalar potential and Yukawa terms. By a standard argument this result indicates a generalization of the Bern-Carrasco-Johansson relations for tree level amplitudes exists to the integrand at all loop levels. A concrete relation is presented at one loop. Furthermore, inspired by results in QED it is shown that the results on generalized BCFW shifts of tree level amplitudes imply relations for the so-called rational, bubble and triangle terms of one loop amplitudes in pure Yang-Mills theory. Bubble and triangle terms for instance are shown to obey a five photon decoupling identity, while a three photon decoupling identity is demonstrated for the rational terms. Along the same lines recently conjectured relations for helicity equal amplitudes at one loop are shown to generalize to helicity independent relations for the massive box coefficient of the rational terms.Comment: 69 pages, 27 figure

    The Influence of pCO2 and Temperature on Gene Expression of Carbon and Nitrogen Pathways in Trichodesmium IMS101

    Get PDF
    Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO2 and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO2 (400 and 900 Āµatm) and temperature (25 and 31Ā°C). Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO2 concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX), energy metabolism (atpB, sod, prx, glcD), nitrogen metabolism (glnA, hetR, nifH), and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA). nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO2 and temperature were elevated. CO2 concentrating mechanism genes were not affected by pCO2 and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO2 concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO2 concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N2 fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO2 and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. Ā© 2011 Springer-Verlag

    Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic

    Get PDF
    Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of āˆ¼5.8 million predicted proteins across seven sites, from three different size classes: 0.1ā€“0.8, 0.8ā€“3.0 and 3.0ā€“200.0ā€‰Ī¼m. Taxonomic and metabolic analyses suggest that sequences from the 0.1ā€“0.8ā€‰Ī¼m size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8ā€“200ā€‰Ī¼m) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially
    • ā€¦
    corecore