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point amplitudes. However, the single-soft limit does not vanish for this latter set of
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1 Introduction

Divergences of four-dimensional gravity theories have been under investigation practically

since the advent of quantum field theory. While pure gravity can be shown to be free of

ultraviolet divergences at one loop, the addition of scalars or other particles renders the

theory nonrenormalizable [1]. At the two-loop level, the counterterm

R3 ≡ Rλρ
µν Rστ

λρ Rµν
στ (1.1)

has been shown to respect all symmetries, to exist on-shell [2, 3] and to have a nonzero

coefficient for pure gravity [4, 5].

Supersymmetry is known to improve the ultraviolet behavior of many quantum field

theories. In fact, supersymmetry forbids the R3 counterterm in any supersymmetric version

of four-dimensional gravity, provided that all particles are in the same multiplet as the

graviton [6–8]. That is because the operator R3 generates a scattering amplitude that can

be shown to vanish by supersymmetric Ward identities (SWI) [6, 9–12]. However, the next

possible counterterm [7, 13–16] is

R4 ≡ tµ1ν1...µ4ν4
8 tρ1σ1...ρ4σ4

8 Rµ1ν1ρ1σ1Rµ2ν2ρ2σ2Rµ3ν3ρ3σ3Rµ4ν4ρ4σ4 , (1.2)
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where t8 is defined in eq. (4.A.21) of ref. [17]. This operator, also known as the square of the

Bel-Robinson tensor [18–20], on dimensional grounds can appear as a counterterm at three

loops. It is compatible with supersymmetry, not just N = 1 but all the way up to maximal

N = 8 supersymmetry. This property follows from the appearance of R4 in the low-energy

effective action of the N = 8 supersymmetric closed superstring [21]; indeed, it represents

the first correction term beyond the limit of N = 8 supergravity [22], appearing at order

α′3. We denote by R4 the N = 8 supersymmetric multiplet of operators containing R4.

We note that beyond the four-point level, and in more than four dimensions, it

is possible to distinguish at least one other quartic combination of Riemann tensors,

maintaining N = 8 supersymmetry. In the notation of refs. [23, 24], the R4 term ap-

pearing in the tree-level closed superstring effective action in ten dimensions is actually

e−2φ(t8t8 − 1
8ǫ10ǫ10)R

4, where ǫ10 is the ten-dimensional totally antisymmetric tensor, and

φ is the (ten-dimensional) dilaton. The dilaton is also the string loop-counting parameter,

so that terms in the effective action at L loops are proportional to exp(−2(1−L)φ) (in string

frame). The corresponding term in the one-loop effective action in the IIA string theory dif-

fers from the IIB case in the sign of the ǫ10ǫ10 term, and is proportional to (t8t8+
1
8ǫ10ǫ10)R

4.

In four dimensions, the ǫ10ǫ10 terms vanish. However, the different possible dependences of

R4 terms on the dilaton persist, and become more complicated, because the dilaton resides

in the 70 scalars of N = 8 supergravity, which are members of the 70 representation of

SU(8), and the R4 prefactor should be SU(8) invariant. Green and Sethi [25] found power-

ful constraints on the possible dependences in ten dimensions using supersymmetry alone;

indeed, only tree-level (e−2φ) and one-loop (constant) terms are allowed. It would be very

interesting to examine the analogous supersymmetry constraints in four dimensions.

The issue of possible counterterms in maximal N = 8 supergravity [26, 27] is under

perpetual investigation. Many of the current arguments rely on (linearized) superspace

formulations and nonrenormalization theorems [28, 29], which in turn depend on the exis-

tence of an off-shell superspace formulation. It was a common belief for some time that a

superspace formulation of maximally-extended supersymmetric theories could be achieved

employing off-shell formulations with at most half of the supersymmetry realized. On the

other hand, an off-shell harmonic superspace with N = 3 supersymmetry for N = 4 super-

Yang-Mills (SYM) theory was constructed a while ago [30]. Assuming the existence of a

similar description realizing six of the eight supersymmetries of N = 8 supergravity would

postpone the onset of possible counterterms at least to the five-loop level, while realizing

seven of eight would postpone it to the six-loop level [29]. However, an explicit construction

of such superspace formalisms has not yet been achieved in the gravitational case.

Another way to explore the divergence structure of N = 8 supergravity is through

direct computation of on-shell multi-loop graviton scattering amplitudes. The two-loop

four-graviton scattering amplitude [31] provided the first hints that the R4 counterterm

might have a vanishing coefficient at three loops. The full three-loop computation then

demonstrated this vanishing explicitly [32, 33]. A similar cancellation has been confirmed

at four loops recently [34]. The latter cancellation in four dimensions is not so surprising

for the four-point amplitude, because operators of the form ∂2R4 can be eliminated in favor

of R5 using equations of motion [35], and it has been shown that there is no N = 8 super-
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symmetric completion of R5 [36, 37]. (This is consistent with the absence of R5 terms from

the closed-superstring effective action [38].) On the other hand, the explicit multi-loop

amplitudes show an even-better-than-finite ultraviolet behavior, as good as that for N = 4

super-Yang-Mills theory, which strengthens the evidence for a yet-unexplored underlying

symmetry structure.

There are also string- and M-theoretic arguments for the excellent ultraviolet behavior

observed to date. Using a nonrenormalization theorem developed in the pure spinor for-

malism for the closed superstring [39], Green, Russo and Vanhove argued [40] that the first

divergence in N = 8 supergravity might be delayed until nine loops. (On the other hand,

a very recent analysis of dualities and volume-dependence in compactified string theory by

the same authors [41] indicates a divergence at seven loops, in conflict with the previous ar-

gument.) Arguments based on M-theory dualities suggest the possibility of finiteness to all

loop orders [42, 43]. However, the applicability of arguments based on string and M theory

to N = 8 supergravity is subject to issues related to the decoupling of massive states [44].

There have also been a variety of attempts to understand the ultraviolet behavior of

N = 8 supergravity more directly at the amplitude level. The “no triangle” hypothesis [45–

47], now a theorem [48, 49], states in essence that the ultraviolet behavior of N = 8

supergravity at one loop is as good as that of N = 4 super-Yang-Mills theory. It also

implies many, though not all, of the cancellations seen at higher loops [50]. Some of

the one-loop cancellations are not just due to supersymmetry, but to other properties of

gravitational theories [51], including their non-color-ordered nature [52, 53].

These one-loop considerations, and the work of ref. [29], suggest that conventional N =

8 supersymmetry alone may not be enough to dictate the finiteness of N = 8 supergravity.

However, since the construction of N = 8 supergravity [26, 27, 54] it has been realized that

another symmetry plays a key role — the exceptional, noncompact continuous symmetry

E7(7)(R), or E7(7) for short. Could this symmetry contribute somehow to an explanation

of the (conjectured) finiteness of the theory?

The general role of the E7(7) symmetry, regarding the finiteness of maximal super-

gravity, has been a topic of constant discussion. (Aspects of its action on the Lagrangian

in light-cone gauge [55], and covariantly [56, 57], have also been considered recently.) A

seven-loop N = 8 supersymmetric counterterm was constructed in the past by Howe and

Lindström [15]. Although this counterterm does not appear to be invariant under the non-

linear E7(7) symmetry [16], the volume form for the on-shell N = 8 superspace represents a

second, E7(7)-invariant, seven-loop counterterm — if it is nonvanishing [58]. Also, a mani-

festly E7(7)-invariant counterterm was presented long ago at eight loops [15, 59]; however,

newer results using the light-cone formalism cast a different light on the question [60].

In this article we investigate whether restrictions on the appearance of the R4 term

could originate directly from the exceptional symmetry. One way to test whether R4 is

invariant under E7(7) is to utilize properties of the on-shell amplitudes that R4 produces.

This method is convenient because it turns out that the amplitudes can be computed,

using string theory, even when a full nonlinear expression for R4 in four dimensions is

unavailable. However, it is limited to the matrix elements produced by the R4 term in the

tree-level string effective action. As discussed earlier, there may be other possible N = 8
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supersymmetric R4 terms, distinguished for example by their precise dependence on the

scalar fields in the theory, which we will not be able to probe in this way.

Arkani-Hamed, Cachazo and Kaplan (ACK) [49] provided a very useful tool for an

amplitude-based approach. Working in pure N = 8 supergravity, they showed recursively

how generic amplitudes with one soft scalar particle vanish as the soft momentum ap-

proaches zero. This vanishing was first observed by Bianchi, Elvang and Freedman [61],

and associated with the fact that the scalars parametrize the coset manifold E7(7)/SU(8)

and obey relations similar to soft pion theorems [62, 63]. On the other hand, in the case of

soft pion emission, the amplitude can remain nonvanishing as the (massless) pion momen-

tum vanishes, due to graphs in which the pion is emitted off an external line; a divergence

in the adjacent propagator cancels a power of pion momentum in the numerator from

the derivative interaction. In the supergravity case, it was found that the external scalar

emission graphs actually vanish on-shell in the soft limit [61].

ACK further considered in detail the emission of two additional soft scalar particles

from a hard scattering amplitude, and thereby derived a relation between amplitudes dif-

fering by two in the number of legs. The relation should hold for any theory with E7(7)

symmetry. If one could show agreement of the single-soft limit and the ACK relation for

all amplitudes derived from a modified N = 8 supergravity action, in this case perturbing

it by the R4 term, then this action should obtain no restrictions from E7(7).

Actually, for this conclusion to hold, E7(7) should remain a good symmetry at the

quantum level. Although there is evidence in favor of this, we know of no all-orders proof.

At one loop, the cancellation of anomalies for currents from the SU(8) subgroup of E7(7) was

demonstrated quite a while ago [64]. The analysis was subtle because a Lagrangian for the

vector particles cannot be written in a manifestly SU(8)-covariant fashion. Thus the vectors

contribute to anomalies, cancelling the more-standard contributions from the fermions.

More recently, the question of whether the full E7(7) is a good quantum symmetry has been

re-examined using the methods of ACK. He and Zhu recently showed that the infrared-finite

part of single-soft scalar emission vanishes at one loop for an arbitrary number of external

legs [65] as it does at tree level. (Earlier, Kallosh, Lee and Rube [66] showed the vanishing

of the four-point one-loop amplitude in the single-soft limit for complex momenta.) A

similar argument by Kaplan [67] shows that the double-soft scalar limit relation in N = 8

supergravity can also be extended to one loop. These results support the conjecture that

the full continuous E7(7)(R) is a good quantum symmetry of the theory, at least at the one-

loop level. Beyond perturbation theory, assuming that black holes contribute to graviton

scattering amplitudes, there is good reason to believe that the continuous symmetry will

be broken, but that a discrete subgroup E7(7)(Z) will survive. However, non-perturbative

considerations are far beyond the scope of this article.

The purpose of this article is to test the E7(7) invariance of eq. (1.2), by exploring

the validity of the single-soft limits and the ACK relation for the four-dimensional N = 8

supergravity action, modified by adding the supersymmetric extension of the R4 term that

appears in the tree-level closed superstring effective action. The bulk of the article is de-

voted to the construction of amplitudes produced by this term. As we will see, we need

to go to six-point next-to-maximal-helicity-violating (NMHV) amplitudes to get the first
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nontrivial result. The strategy for obtaining information about higher-order α′-terms in

closed-string scattering is the same as used in a recent article by Stieberger [38]: We will

fall back to open-string calculations [68] and derive the corresponding closed-string results

by employing the Kawai-Lewellen-Tye (KLT) [69] relations.

The remainder of this article is organized as follows. Sections 2 and 3 collect the

background information on symmetries of N = 8 supergravity, including the double-soft

scalar limit of amplitudes, and they illuminate the state and availability of open-string

amplitude calculations. In section 4 the calculation is set up. We start by introducing the

KLT relations connecting open- and closed-string amplitudes in subsection 4.1. A suitable

amplitude for probing the double-soft scalar limit relation is singled out in subsection 4.2.

The N = 1 supersymmetric Ward identities needed to make use of the available open-string

amplitudes are described in detail in subsections 4.3, 4.4 and 4.5. The main result of this

article, the testing of possible restrictions originating from E7(7) symmetry, by employing

the single- and double-soft scalar limit relations on amplitudes produced by the R4 term,

is presented in section 5. In section 6 we draw our conclusions.

2 Coset structure, hidden symmetry and double-soft limit

The physical field content of the maximal supersymmetric gravitational theory in four

dimensions, N = 8 supergravity [26, 27], consists of a vierbein (or graviton), 8 gravitini, 28

abelian gauge fields, 56 Majorana gauginos of either helicity, and 70 real (or 35 complex)

scalars, which can be collected together in a single massless N = 8 (on-shell) supermultiplet.

Starting from the fact that the vector bosons form an antisymmetric tensor represen-

tation of SO(8) in the ungauged theory, Bianchi identities and equations of motion can

be considered in order to realize a much larger symmetry, which leads to the notion of

generalized electric-magnetic duality transformations. Investigating these transformations

more closely and enlarging the corresponding duality group maximally by adding further

scalars, not all of which turn out to be physical. After gauging a resulting local SU(8)

symmetry in order to reduce the degrees of freedom of the generalized duality group, 70

physical scalars remain. These scalars parameterize the coset
E7(7)

SU(8) [27, 70], where E7(7)

denotes a noncompact real form of E7, which has SU(8) as its maximal compact subgroup.

In other words, the scalars can be identified with the noncompact generators of E7(7). The

resulting gauge is called unitary.

More explicitly, in unitary gauge the 63 compact generators T J
I of SU(8) can be joined

with 70 generators XI1...I4 to form the adjoint representation of E7(7). Here XI1...I4 trans-

forms under SU(8) in the four-index antisymmetric tensor representation (I, J = 1, . . . , 8).

The commutation relations between those generators are given schematically by

[T, T ] ∼ T , [X,T ] ∼ X , and [X,X] ∼ T . (2.1)

The first commutator is just the usual SU(8) Lie algebra, and the second one follows

straightforwardly from the identification of X with the 70 of SU(8). The more nontrivial

statement about E7(7) invariance resides in the third commutator in eq. (2.1). Assuming
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the two scalars to be represented as XI1...I4
1 and X2 I5...I8, where the upper-index version

can be obtained by employing the SU(8)-invariant tensor,

XI1...I4 =
1

24
εI1I2I3I4I5I6I7I8XI5...I8 , (2.2)

the third relation reads explicitly (see e.g. ref. [49]),

− i [XI1...I4
1 ,X2 I5...I8] = εJI2I3I4

I5I6I7I8
T I1

J + εI1JI3I4
I5I6I7I8

T I2
J + . . . + εI1I2I3I4

I5I6I7J T J
I8 . (2.3)

Here εI1I2I3I4
I5I6I7I8

= 1,−1, 0 if the upper index set is an even, odd or no permutation of the lower

set, respectively. (For a more general discussion of the properties of E7(7), see appendix B

of ref. [27].)

Amplitudes in N = 8 supergravity are invariant under SU(8) rotations by construc-

tion. On the other hand, the action of the coset symmetry
E7(7)

SU(8) on amplitudes is not

obvious. One can understand the connection by recalling that the vacuum state of the

theory is specified by the expectation values of the physical scalars. Because the scalars

are Goldstone bosons, the soft emission of scalars in an amplitude changes the expectation

value and moves the theory to another point in the vacuum manifold.

Arkani-Hamed, Cachazo and Kaplan [49] used the BCFW recursion relations [71, 72]

to investigate how the noncompact part of E7(7) symmetry controls the soft emission of

scalars in N = 8 supergravity. Consider first the emission of a single soft scalar (which

was also studied in refs. [61, 73]). The corresponding amplitudes can be traced back via

the BCFW recursion relations to the three-particle amplitude, whose vanishing in the soft

limit can be shown explicitly. Hence the emission of a single scalar from any amplitude

vanishes in N = 8 supergravity,

Mn+1(1, 2, . . . , n + 1) −−−→
p1→0

0 , (2.4)

where p1 denotes the vanishing scalar momentum.

Moving on to double-soft emission, several different situations have to be distinguished,

which are labelled by the number of common indices between the sets {I1, I2, I3, I4} and

{I5, I6, I7, I8} in eq. (2.3). Four common indices allow the creation of an SU(8) singlet,

corresponding to the emission of a single soft graviton. This case is not interesting because

[X,X] vanishes. Similarly, if the scalars share one or two indices, the situation corresponds

to a single soft limit in one of the subamplitudes generated by the BCFW recursion rela-

tions; thus this limit vanishes, and does not probe the commutator in eq. (2.3). Another

way to see the vanishing is to reconsider eq. (2.3) explicitly: there are simply not enough

indices to saturate the right-hand side. The only interesting configuration occurs if the two

scalars X1 and X2 agree on exactly three of their indices. This result is in accordance with

the commutation relation (2.3), where three equal indices are necessary for the commutator

of two noncompact generators to yield a result proportional to an SU(8) generator.

Performing an explicit calculation of an (n+2)-point supergravity tree amplitude Mn+2

containing two scalars sharing three indices and considering the double-soft limit on X1

– 6 –
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and X2 results in the double-soft limit [49]

Mn+2(1, 2, . . . , n + 2) −−−−−→
p1,p2→0

1

2

n+2
∑

i=3

pi · (p2 − p1)

pi · (p1 + p2)
T (ηi)Mn(3, 4, . . . , n + 2) , (2.5)

where

T (ηi)
J
K = T

(

[XI1...I4,XI5...I8]
)J

K
= εI1I2I3I4K

I5I6I7I8J × ηiK∂ηiJ
(2.6)

acts on (Mn)KJ ; the n-point amplitude Mn has open SU(8) indices due to the particular

choice of indices of the scalars. Again, εI1I2I3I4K
I5I6I7I8J = 1,−1, 0 if the upper index set is an

even, odd or no permutation of the lower set.

The Grassmann variables ηiA in the argument of eq. (2.6) refer to the description of

an amplitude in the so-called on-shell superspace formalism [74]. They are a set of 8n

anticommuting objects, where the index i = 1, . . . , n numbers the particles and A is an

SU(8) index. Using these variables, one can write down a generating functional for MHV

amplitudes in supergravity [61],

Ωn =
1

256

Mn(B−
1 , B−

2 , B+
3 , B+

4 , . . . , B+
n )

〈12〉8
8

∏

A=1

n
∑

i,j=1

〈ij〉ηiAηjA , (2.7)

where B± are positive and negative helicity gravitons. We employ the spinor-product

notation 〈ij〉 = 〈p−i |p+
j 〉, [ij] = 〈p+

i |p−j 〉, normalized by 〈ij〉[ji] = 2pi · pj, where |p±i 〉
are massless Weyl spinors. Particle states of the N = 8 multiplet can be identified with

derivatives with respect to the anticommuting variables,

1 ↔ B+
i

∂

∂ηiA
↔ FA+

i · · · ∂4

∂ηiA∂ηiB∂ηiC∂ηiD
↔ XABCD · · ·

· · · − 1

7!
εABCDEFGH

∂7

∂ηiB∂ηiC . . . ∂ηiH
↔ F−

iA

· · · 1

8!
εABCDEFGH

∂8

∂ηiA∂ηiB . . . ∂ηiH
↔ B−

i , (2.8)

where the number of η’s is connected to the helicity of the state, and F± denote gravitini of

either helicity. Acting with these operators on the generating functional (2.7), one obtains

the correct expressions for the corresponding component amplitudes, which automatically

obey the MHV supersymmetry Ward identities. For example a two-gravitino two-graviton

amplitude will read:

〈F 5+ F−
5 B+ B−〉 ≡ M4(F

5+
1 , F−

2,5, B
+
3 , B−

4 )

= −
(

∂

∂η15

)(

1

7!
ε12345678

∂7

∂η21 . . . ∂η24∂η26 . . . ∂η28

)

×
(

1

8!
ε12345678

∂8

∂η41 . . . ∂η48

)

Ω4 . (2.9)

As we will see below, the SU(8) generator (2.6) will act consistently on the remnant of the

six-point amplitude represented in the above formalism.
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In the double-soft limit (2.5), the amplitude with two soft scalars sharing three indices

becomes a sum of amplitudes with only hard momenta; in each summand one leg gets

SU(8) rotated by an amount depending on its momentum. This relation has been proven

by ACK at tree-level for pure N = 8 supergravity. Here we will construct a suitable α′-

corrected amplitude, derived from an action containing the supersymmetrized version of

the R4 term, and then take the double-soft limit numerically in order to test the E7(7)

invariance of this term.

In order to do so, we will first have a look at string theory corrections to field theory

amplitudes in the next section, before we set up the actual calculation in section 4.

3 String theory corrections to field theory amplitudes

Tree amplitudes for Type I open and Type II closed string theory have been computed

and expanded in α′ for various collections of external states. The leading terms in the low-

energy effective action are N = 4 SYM and N = 8 supergravity, respectively [22]. Indeed,

in the zero Regge slope limit (α′ → 0), the string amplitudes agree with the corresponding

field theory results.

Expanding the string theory amplitude further in α′ yields corrections to the field-

theoretical expressions, which can be summarized by a series of local operators in the

effective field theory. Terms which have to be added to the N = 4 SYM and N = 8 super-

gravity actions in order to reproduce the α′ corrections have been identified for low orders

in α′. In particular, the first nonzero string correction to the action of N = 8 supergravity

is the supersymmetrized version of the possible R4 counterterm (1.2) discussed above [21].

The next subsection reviews properties of amplitudes in maximally supersymmetric

field theories. Some recent computations of string theory amplitudes and their low-energy

expansions are discussed in the following subsection.

3.1 Tree-level amplitudes in N = 4 SYM and N = 8 supergravity

A general amplitude in N = 4 SYM can be color-decomposed as

ASYM
n (1, 2, . . . , n) = gn−2

YM

∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))ASYM
n (σ(1), σ(2), . . . , σ(n)), (3.1)

where the summation is over all (n − 1)! non-cyclic permutations of i = 1, 2, . . . , n. The

number i is understood as a collective label for the momentum pi and helicity hi of particle

i, e.g. 1 ≡ (p1, h1), and the T ai are matrices in the fundamental representation of the

Yang-Mills gauge group SU(Nc), normalized to Tr(T aT b) = δab.

The gauge-invariant subamplitudes ASYM
n are independent of the color structure and

can be shown to exhibit the following properties [75]:

• invariance under cyclic permutations: ASYM
n (1, 2, . . . , n) = ASYM

n (2, 3, . . . , n, 1)

• reflection identity: ASYM
n (1, 2, . . . , n) = (−1)nASYM

n (n, n − 1, . . . , 2, 1)
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• photon decoupling (or dual Ward) identity:

ASYM
n (1, 2, 3, . . . , n) + ASYM

n (2, 1, 3, . . . , n) + ASYM
n (2, 3, 1, . . . , n)+

+ . . . + ASYM
n (2, 3, . . . , 1, n) = 0. (3.2)

In addition, amplitudes in maximally supersymmetric theories are classified by their he-

licity structure. Employing supersymmetric Ward identities (see section 4.3), pure-gluon

amplitudes with helicity structure (±+ · · ·+) can be shown to vanish [9, 10]. The simplest

nonvanishing configurations (− − + · · ·+) are called maximally helicity violating (MHV)

amplitudes. In the case that all external legs are gluons g±, they are given by [76]:

ASYM
n (g−1 , g−2 , g+

3 , . . . , g+
n ) = i

〈12〉4
〈12〉〈23〉 · · · 〈n1〉 . (3.3)

The simplicity of the MHV sector is also expressed in the relations between different MHV

amplitudes: any MHV amplitude is related directly to the pure-gluon one by supersym-

metric Ward identities (see section 4.3), so that the knowledge of eq. (3.3) determines the

complete set of MHV amplitudes.

While in the four- and five-point case the only nonvanishing configurations are MHV

(or anti-MHV), the advent of a sixth leg introduces a new class of helicity structures,

the so-called next-to-MHV (NMHV) amplitudes. Here it is necessary to distinguish three

different helicity orderings

X : (− −− + ++) Y : (−− + − ++) Z : (− + − + −+) . (3.4)

Expressions for the amplitudes are distinct for the different orderings X, Y and Z. However,

there is no procedural difference in deriving the expressions, so we will generally illustrate

the amplitudes and supersymmetry relations for the helicity configuration X. Explicit

results for all six-point pure-gluon NMHV amplitudes can be found in ref. [75], for example.

More compact expressions result from use of the BCFW recursion relations. Using these

relations, a prescription for determining all tree-level amplitudes in N = 4 SYM from

superconformal invariants has been derived [77].

We note that the supersymmetric Ward identities, reflection symmetry and cyclic

invariance — as well as parity, or spinor conjugation — relate amplitudes within a certain

NMHV helicity ordering only (X, Y or Z). On the other hand, the photon decoupling

identity is an example of a relation among amplitudes featuring different helicity orderings.

Next we turn to amplitudes in N = 8 supergravity. In this case, the color trace, which

forces particles in gauge-theory subamplitudes to remain in a certain cyclic order, does not

exist. Instead, supergravity amplitudes are symmetric under exchange of particles with

the same helicity. We write the full amplitude MSUGRA
n (1, 2, . . . , n) as

MSUGRA
n (1, 2, . . . , n) =

(κ

2

)(n−2)
MSUGRA

n (1, 2, . . . , n), (3.5)
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where only the gravitational coupling constant κ =
√

32πGN has been removed from

MSUGRA
n . The four- and five-point MHV amplitudes for gravitons B± are given by [78]

MSUGRA
4 (B−

1 , B−
2 , B+

3 , B+
4 ) = i 〈12〉8 [12]

〈34〉N(4)
,

MSUGRA
5 (B−

1 , B−
2 , B+

3 , B+
4 , B+

5 ) = i 〈12〉8 ε(1, 2, 3, 4)

N(5)
,

(3.6)

where

ε(i, j,m, n) = 4iεµνρσpµ
i pν

j p
ρ
mpσ

n = [ij]〈jm〉[mn]〈ni〉 − 〈ij〉[jm]〈mn〉[ni] (3.7)

and

N(n) ≡
n−1
∏

i=1

n
∏

j=i+1

〈ij〉 . (3.8)

The higher-point MHV graviton amplitudes were first written down in ref. [78]. Explicit

expressions for other helicity configurations are rare. However, in ref. [79] a prescription is

given how to calculate any N = 8 supergravity tree-level amplitude by employing “gravity

subamplitudes”, BCFW recursion relations, and superconformal invariants [77, 80].

In the on-shell superspace formalism introduced above, the determination of the type

of amplitude away from those containing gluons (gravitons) exclusively can be done by

counting derivatives acting on the appropriate generating functional. While 8 (16) deriva-

tives are necessary for MHV amplitudes in N = 4 SYM (N = 8 supergravity), there are

12 (24) derivatives in the NMHV sector.

3.2 Amplitudes in open and closed string theory

Open-string tree amplitudes An have the same color decomposition (3.1), with ASYM
n re-

placed by the color-ordered string subamplitude An. At the four-point level, the two

subamplitudes are related by the Veneziano formula,

A4(1
−, 2−, 3+, 4+) = V (4)(s1, s2)ASYM

4 (1−, 2−, 3+, 4+)

=
Γ(1 + s1)Γ(1 + s2)

Γ(1 + s1 + s2)
ASYM

4 (1−, 2−, 3+, 4+) . (3.9)

The above expression is given in terms of kinematical invariants defined via

[[i]]n = α′ (pi + pi+1 + · · · + pi+n)2 , sj = sj j+1 = [[j]]1 , tj = [[j]]2 , (3.10)

which are s1 = [[1]]1 = s12 = 2α′p1 · p2 and s2 = [[2]]1 = s23 = 2α′p2 · p3 on-shell. Expanding

the form-factor V (4) in powers of α′ one finds

V (4)(s1, s2) = 1 − ζ(2)s1s2 + ζ(3)s1s2(s1 + s2) + O(α′4), (3.11)

where the leading correction to the pure Yang-Mills amplitude arises from the interaction

term of four gauge field-strength tensors [17, 81, 82].
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The full open string amplitude is quite simple in the four-point case (3.9). On the

other hand, its generalizations to more external legs turn out to involve generalized hyper-

geometric functions [83]. Any n-point open string amplitude can be expressed in terms of

(n − 3)! hypergeometric basis integrals. Expanding those functions in powers of α′ yields

expressions for the string-corrected five- and six-point MHV amplitudes,

A5 =

[

V (5)(sj) −
i α′2

2
ε(1, 2, 3, 4)P (5)(sj)

]

ASYM
5 ,

A6 =

[

V open
6 (sj , tj) −

i α′2

2

5
∑

k=1

εkP
(6)
k (sj, tj)

]

ASYM
6 , (3.12)

where

ε1 = ε(2, 3, 4, 5), ε2 = ε(1, 3, 4, 5), ε3 = ε(1, 2, 4, 5), ε4 = ε(1, 2, 3, 5), ε5 = ε(1, 2, 3, 4) .

(3.13)

Expansions in α′ are given by [84, 85]

V (5)(si) = 1 − ζ(2)

2
(s1s2 + s2s3 + s3s4 + s4s5 + s5s1)

+
ζ(3)

2

(

s2
1s2 + s2

2s3 + s2
3s4 + s2

4s5 + s2
5s1 + s1s

2
2 + s2s

2
3 + s3s

2
4 + s4s

2
5 + s5s

2
1

+ s1s3s5 + s2s4s1 + s3s5s2 + s4s1s3 + s5s2s4

)

+ O(α′4) , (3.14)

P (5)(si) = ζ(2) − ζ(3)(s1 + s2 + s3 + s4 + s5) + O(α′2) , (3.15)

and explicit expressions for V (6) and P
(6)
k can be found in the same reference.

Stieberger and Taylor have pushed the calculations even further [68]. In the process

of determining all pure-gluon NMHV six-point amplitudes, they computed the following

additional auxiliary amplitudes for the helicity configuration X defined in eq. (3.4):

〈φ−φ−φ−φ+φ+φ+〉 , 〈φ−φ−λ−λ+φ+φ+〉 , and 〈φ−φ−g−g+φ+φ+〉 , (3.16)

as well the analogous quantities for Y and Z. Here λ denotes a gluino and φ a scalar. In

order to get an impression of the complexity of the result, we provide the pure-gluon NMHV

six-point amplitude in helicity configuration X [68], which will be expressed employing the

following kinematic variables:

αX = − [12]〈34〉[ 6|X|5〉 , βX = [12]〈45〉[ 6|X|3〉 , γX = [61]〈34〉[2|X|5〉 , (3.17)

where X ≡ p6 + p1 + p2. The subamplitude reads1

A6(g
+
1 , g+

2 , g−3 , g−4 , g−5 , g+
6 ) =

=
α′5

s5

(

NX
1

α2
X

s2
1s

2
3

+ NX
2

β2
X

s2
1

+ NX
3

γ2
X

s2
3

+ NX
4

αXβX

s2
1s3

+ NX
5

αXγX

s1s2
3

+ NX
6

βXγX

s1s3

)

,

(3.18)

1Note the shifted ordering of helicities compared to eq. (3.4). A cyclic shift (1, 2, 3, 4, 5, 6) →

(3, 4, 5, 6, 1, 2) has to be performed in order to match the results analytically with ref. [68].
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where the expansion of the functions NX to O(α′2) is:

NX
1 = −ζ(2) s1s3 + · · · ,

NX
2 =

s1

s2s4t1
− ζ(2)

(

s1s6

s2s4
+

s2
1

s4t1
+

s1s5

s2t1

)

+ · · · ,

NX
3 =

s3

s2s6t2
− ζ(2)

(

s3s4

s2s6
+

s3s5

s2t2
+

s2
3

s6t2

)

+ · · · ,

NX
4 = ζ(2)

(

s1t2
s2

+
s1t3
s4

)

+ · · · ,

NX
5 = ζ(2)

(

s3t1
s2

+
s3t3
s6

)

+ · · · ,

NX
6 =

t3
s2s4s6

+ ζ(2)

(

s1 + s3 − s5

s2
− t1t3

s2s4
− t2t3

s2s6
− t23

s4s6

)

+ · · · . (3.19)

The low-energy limit of closed Type II string theory in four dimensions is N = 8

supergravity. The first correction to the low-energy effective action can be determined from

the expression for the closed string four-point amplitude, or Virasoro-Shapiro amplitude,

M4(1
−, 2−, 3+, 4+) = V

(4)
closed(s1, s2)MSUGRA

4 (1−, 2−, 3+, 4+)

=
Γ(1 + s1)Γ(1 + s2)Γ(1 − s1 − s2)

Γ(1 − s1)Γ(1 − s2)Γ(1 + s1 + s2)
MSUGRA

4 (1−, 2−, 3+, 4+) . (3.20)

The expansion of V
(4)
closed has the first nonvanishing correction at O(α′3),

V
(4)
closed(s1, s2) = 1 + 2 ζ(3) s1s2(s1 + s2) + O(α′4) , (3.21)

which corresponds to a supersymmetrized version of eq. (1.2) in the low energy effective

action [21]. In other words, keeping terms up to order O(α′3) in the closed-string amplitudes

is equivalent to working with a theory whose effective action is given by

Scorr =

∫

d4x
√−g(R + α′3R4) + O(α′4) . (3.22)

While α′-corrected six-point amplitudes in open string theory (N = 4 SYM) are al-

ready very cumbersome to calculate, the situation is even worse for closed string theory

(N = 8 supergravity). For higher-point tree amplitudes it is therefore more convenient

to rely on the KLT relations, which express closed string amplitudes as simple quadratic

combinations of open string amplitudes.

Several different cyclic orderings of the open string amplitudes are required as input to

the KLT relations. Fortunately, there are several open string amplitudes available. In par-

ticular, a couple of six-point NMHV amplitudes have been computed [68],2 which will serve

below as input to the calculation of a suitable α′-corrected N = 8 supergravity amplitude.

2We are grateful to Stephan Stieberger and Tomasz Taylor for providing us with expressions for the

amplitudes from ref. [68] through order α′3.
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4 Setting up the calculation

Arkani Hamed, Cachazo and Kaplan have proven eq. (2.5) analytically, by employing

BCFW recursion relations for N = 8 supergravity with E7(7) realized on-shell. Because in-

variance under E7(7) is a necessary condition for the relation to be valid, eq. (2.5) provides

a useful tool for testing other theories, or operators, for their symmetry properties under

E7(7). In particular, if the double-soft limit of all (n + 2)-point amplitudes derived from

eq. (3.22) coincides with the SU(8) rotated sum of the corresponding n-point amplitudes,

that would be strong evidence that E7(7) symmetry does not restrict the appearance of R4

as a counterterm in N = 8 supergravity.

The analytical approach that ACK used to prove eq. (2.5) does not hold for the α′-

corrected N = 8 amplitudes. Higher-dimension operators lead to poorer large-momentum

behavior, so that amplitudes shifted by large complex momenta will not fall off fast enough

for the BCFW recursion relations to be valid. Instead we will find explicit (if lengthy) ex-

pressions for suitable and available string theory amplitudes, from which the α′-corrected

amplitudes corresponding to eq. (3.22) can be deduced, and their double-soft limits in-

spected (numerically).

After we give a short introduction to the KLT relations in subsection 4.1, we will

explore the constraints on the α′-corrected N = 8 supergravity amplitude originating from

the double-soft limit relation (2.5) in subsection 4.2. Appropriate N = 8 amplitudes will

be identified and decomposed into N = 4 SYM matrix elements using the KLT relations.

The required (α′-corrected) N = 4 SYM matrix elements can be related to the available

open string amplitudes by carefully examining the NMHV supersymmetric Ward identities.

In subsections 4.3 and 4.4, the N = 1 supersymmetric Ward identities will be reviewed

in detail and used to finally obtain expressions for the N = 4 amplitudes, which serve as

input to the KLT relations, in section 5.

4.1 KLT relations

Tree-level amplitudes in closed and open string theories are linked by the KLT relations [69],

which arise from the fact that any closed-string vertex operator can be represented as a

product of two open-string vertex operators,

V closed(zi, z̄i) = V open
left (zi)V

open
right(z̄i) . (4.1)

While in the closed-string amplitude the insertion points zi, z̄i of vertex operators are

integrated over a two-sphere, in the open-string case the real zi are integrated over the

boundary of a disk. Thus the closed-string integrand equals the product of two open-string

integrands. KLT related the two sets of string amplitudes by evaluating the closed-string

integrals via a contour deformation in terms of the open-string integrals.

The KLT relations for four-, five- and six-point amplitudes are

M4(1, 2, 3, 4) =
−i

α′π
sin(πs12)A4(1, 2, 3, 4)A4(1, 2, 4, 3) , (4.2)

M5(1, 2, 3, 4, 5) =
i

α′2π2
sin(πs12) sin(πs34)A5(1, 2, 3, 4, 5)A5(2, 1, 4, 3, 5)

+ P(2, 3) , (4.3)
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sin(πs12) sin(πs34) A5(1, 2, 3, 4, 5) A5(2, 1, 4, 3, 5)

O(α′1) O(α′1) O(α′0) O(α′2)

O(α′1) O(α′1) O(α′2) O(α′0)

O(α′3) O(α′1) O(α′0) O(α′0)

O(α′1) O(α′3) O(α′0) O(α′0)

Table 1. Enumeration of the orders in α′ required from various factors, in order to compute the

five-point closed-string amplitude to O(α′2) using the KLT relations.

M6(1, 2, 3, 4, 5, 6) =
−i

α′3π3
sin(πs12) sin(πs45)A6(1, 2, 3, 4, 5, 6)

×[sin(πs35)A6(2, 1, 5, 3, 4, 6)+sin(π(s34+s35))A6(2, 1, 5, 4, 3, 6)]

+ P(2, 3, 4) , (4.4)

where “+P” indicates a sum over the m! permutations of the m arguments of P. Formulae

for higher-point amplitudes can be derived straightforwardly [69]. In the field-theory (α′ →
0) limit, a closed form has been obtained for all n [45].

The above equalities are exact relations between string theory amplitudes, and so they

are valid order by order in α′. In order to calculate the string correction to an N = 8

supergravity amplitude at a certain order in α′ from known α′-corrected expressions in

N = 4 SYM, one has to determine all combinations of terms from the expansions of the

amplitudes and the sine functions, whose multiplication results in the correct power of

α′. For instance, the second-order correction to the five-point amplitude in supergravity

corresponds to terms of O(α′4), due to the prefactor of 1
α′2 . Taking the absence of first-

order corrections to N = 4 SYM amplitudes into account, four combinations have to be

considered in eq. (4.3), according to table 1, yielding

M
O(α′2)
5 =

is12s34

α′2

[

ASYM
5 (1, 2, 3, 4, 5)A

O(α′2 )
5 (2, 1, 4, 3, 5)

+ A
O(α′2)
5 (1, 2, 3, 4, 5)ASYM

5 (2, 1, 4, 3, 5)

− π2

6
(s2

12 + s2
34)A

SYM
5 (1, 2, 3, 4, 5)ASYM

5 (2, 1, 4, 3, 5)

]

+ P(2, 3) . (4.5)

The above expression can be shown to vanish analytically, in accordance with the higher-

point generalization of eq. (3.21), or alternatively eq. (3.22), the statement that the first

correction to the closed-string effective action is at O(α′3).

Although the KLT relations are often applied to pure-graviton and pure-gluon am-

plitudes, their use is not limited to these scenarios. Any pair of consistent open-string

amplitudes is related to an amplitude in closed string theory and vice versa. Considering

the combination of two open-string vertex operators into a closed one in eq. (4.1), one

can immediately determine which type of particle has to appear at a certain position on

the supergravity side by adding the helicities and combining the indices, according to the

tensor-product decomposition of the Fock space,

[N = 8] ↔ [N = 4]L ⊗ [N = 4]R . (4.6)
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Somewhat remarkably, the opposite statement is true as well: given a certain operator,

corresponding to a particular state in N = 8 supergravity, the helicity, global symmetry

properties, and the consistent action of supercharges in either of the theories are suffi-

cient to unambiguously determine the decomposition into N = 4 SYM states [61]. The

decompositions relevant for the calculation to follow are

B+ = g+g̃+ , F a+ = λa+g̃+ , F r+ = g+λ̃r+ ,

B− = g−g̃− , F−
a = λ−

a g̃− , F−
r = g−λ̃−

r ,

Xabcd = εabcd g− g̃+ , Xabcr = εabcd λ−
d λ̃r+ , Xabrs = φab φ̃rs ,

Xabcd = εabcd g+ g̃− , Xabcr = εabcd λd+ λ̃−
r , Xabrs = φab φ̃rs , (4.7)

where capital letters B, F, X denote the graviton, gravitino and scalar particle in N = 8

supergravity and g, λ, φ the gluon, gluino and scalar in N = 4 SYM. Quantities with

indices a, b, . . . correspond to the first SU(4), while quantities with a tilde and indices

r, s, . . . are in the second SU(4). (In particular, g̃ does not denote a gluino!) Finally, the

superscripts + and − mark the helicity signature.

4.2 Choosing a suitable amplitude

The simplest scenario one might think of, in order to test the double-soft scalar limit

relation (2.5), would be to start with a five-point amplitude, which in turn would lead

to a sum of three-point amplitudes on the right-hand side of the relation. Three-point

amplitudes are special as they require a setup with complex momenta in order to be

non-trivial. However, here we have to take another constraint into account: we want

to test amplitudes that receive nonvanishing corrections from the R4 term. Because the

interactions originating in this counterterm candidate start at the four-point level, it is not

sufficient to consider three-point amplitudes.

Therefore we will have to consider a six-point amplitude, which should reduce to a

sum of four-point amplitudes in the double-soft limit. We again require that the four-point

amplitudes on the right-hand side of eq. (2.5) are nonvanishing, which implies that they

are MHV (or equivalently anti-MHV). Fortunately, corrections to all MHV-amplitudes with

four legs are known up to O(α′3), indeed to arbitrary orders in α′, using eq. (3.20) and the

MHV supersymmetry Ward identities.

On the left-hand side of eq. (2.5) the situation is more intricate. The four particles

that appear already on the right-hand side are now accompanied by two additional scalars.

According to eq. (2.8), the number of η derivatives acting on the generating functional is

increased by eight, four for each scalar, so that the resulting amplitude resides in the NMHV

sector. In addition, the two scalars have to share three SU(8) indices, as elaborated on in

section 2. Sorting out the distribution of the scalars’ indices into two SU(4) subgroups,

there are finally five possible distinct choices3 satisfying the constraints. They are listed

here, together with their respective KLT decompositions according to equation (4.7):

〈XabrsXabrt · · · · 〉 → 〈φab φab · · · · 〉L × 〈φrs φrt · · · · 〉R, (4.8)

3Another five combinations can be obtained by switching the left and right SU(4).
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〈XabrcXabrs · · · · 〉 → 〈εabcdλ−
d φab · · · · 〉L × 〈λr+ φrs · · · · 〉R, (4.9)

〈XabrcXabrd · · · · 〉 → 〈λ−
d λc+ · · · · 〉L × 〈λr+ λ−

r · · · · 〉R, (4.10)

〈XabcrXabcs · · · · 〉 → 〈λ−
d λd+ · · · · 〉L × 〈λr+ λ−

s · · · · 〉R, (4.11)

〈XabcdXabcr · · · · 〉 → 〈g− λd+ · · · · 〉L × 〈g+ λ−
r · · · · 〉R . (4.12)

Here the ellipses are understood to be filled with four particles such that the L- and R-

amplitudes on the right-hand side of the KLT relation each transform as an SU(4) singlet.

In each of equations (4.10) to (4.12) we have left out a factor of εabcdεabcd. Because these

indices are not summed over, this factor is equal to unity. Note that 〈XabcdXabce · · · · 〉
is absent because the five SU(4) indices a, b, c, d, e cannot be made all distinct.

In order to proceed, we need to use supersymmetric Ward identities to relate one of the

five decompositions (4.8)–(4.12) to the available open-string six-point results (see eq. (3.16)

in section 3):

〈g− g− g− g+ g+ g+〉 , 〈φ− φ− φ− φ+ φ+ φ+〉,
〈φ− φ− λ− λ+ φ+ φ+〉 and 〈φ− φ− g− g+ φ+ φ+〉 . (4.13)

Supersymmetric Ward identities can be classified by the amount of supersymmetry em-

ployed (e.g., N = 1, 2, 4), as well as the number of legs and the sector (MHV, NMHV, etc.)

characterizing the amplitudes. We deal with six-point NMHV amplitudes exclusively here.

The notation N = 4 SWI will refer to the set of supersymmetric Ward identities relat-

ing six-point NMHV amplitudes built from the full N = 4 multiplet (g±, λ±
m, φ±

n ), where

m = 1, 2, 3, 4 and n = 1, 2, 3. (Note that a superscript ± on φ implies a complex field with

a different index labelling from the real φab used above.) In the original article [68], N = 2

supersymmetric Ward identities served to relate the latter three amplitudes in eq. (4.13)

to the pure-gluon one. So the obvious idea would be to search in the decompositions (4.8)–

(4.12) for one in which the amplitudes contain particles from a single N = 2 multiplet

(plus its CPT conjugate), (g±, λ±
m, φ±

1 ) with m = 1, 2.

However, the third amplitude in eq. (4.13) contains only one type of fermion, which

points into the direction of a N = 1 multiplet. Setting up the calculation employing

N = 1 SWI exclusively is a bit simpler than using N = 2 SWI: For six-point NMHV

amplitudes an explicit and simple solution to the N = 1 SWI is known [10, 61]. (We

note that very recently the supersymmetric Ward identities in maximally supersymmetric

N = 4 super-Yang-Mills theory and N = 8 supergravity were solved, quite remarkably,

for arbitrary n-point NkMHV amplitudes [86] in terms of basis amplitudes, in a manifestly

supersymmetric form. These results may prove very useful in extending the considerations

of this paper to greater numbers of legs.)

Now the decompositions (4.8) to (4.12) are not all equally suited to the use of an

N = 1 SWI. For example, the left SU(4) amplitude of eq. (4.9) contains three distinct

SU(4) indices, a, b, d, thus requiring a full N = 4 multiplet. The other four decompositions

contain amplitudes which can be constructed from SWI with less supersymmetry. Indeed,

the decomposition (4.12) contains only one index for the left SU(4) amplitude, and one for

the right one; this decomposition is the one we will use in this paper. As will be explained
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below, it is possible to obtain everything we need for testing the double-soft limit through

eq. (4.12), by using a two-step procedure employing two different sets of N = 1 SWI based

on the multiplets (g±, λ±) and (φ±, λ±).

The next three subsections introduce the SWI in general, elaborate on the N = 1

SWI for (g±, λ±) in particular, and then describe the analogous set of N = 1 SWI for the

multiplet (φ±, λ±). Then, in section 5, we will assemble these ingredients in order to test

the E7(7) symmetry.

4.3 Supersymmetric Ward identities

Supersymmetric Ward identities can be derived using the fact that supercharges annihilate

the vacuum of the theory, Q|0〉 = 0, so that

0 = 〈[Q,β1β2 · · · βn]〉 =
n

∑

i=1

〈β1β2 · · · [Q,βi] · · · βn〉 . (4.14)

Here the βi are arbitrary states from the multiplet under consideration, Q = Q(η) = 〈Qη〉
is a supersymmetry operator, which has been bosonized by contraction with the Grassmann

variable η, and 〈β1β2 · · · βn〉 will be called the source term for the SWI. Source terms need

to have an odd number of fermions, because amplitudes derived by acting on terms with an

even number of fermions will vanish trivially. An immediate and standard result implied by

eq. (4.14) is the disappearance of all amplitudes with helicity structure 〈+ + + · · ·+〉 and

〈+ −− · · · −〉. With only little more effort one can show that maximally helicity violating

amplitudes (MHV) are related pairwise by SWI, which in turn means that knowing one

amplitude determines the whole MHV sector for a particular number of legs [87]. In the

NMHV sector this is no longer true; here each supersymmetric Ward identity relates three

amplitudes, which requires two known amplitudes in order to determine a third one.

Stieberger and Taylor have explicitly proven for open string theory on the disk that the

forms of the supersymmetric Ward identities to all orders in α′ are identical to those in the

corresponding four-dimensional field-theoretical limit [88]. So the exploration in the next

two subsections will be valid as well for the α′-corrected amplitudes under investigation.

4.4 N = 1 supersymmetric Ward identities

As an example, let us investigate the set of amplitudes involving gluons (g+, g−) and a

single pair of gluinos (λ+, λ−) (from which we drop the SU(4) index for simplicity). The

states are related by N = 1 supersymmetry via

[

Q(η), g+(p)
]

= [pη] λ+(p),
[

Q(η), λ+(p)
]

= −〈pη〉g+(p),
[

Q(η), g−(p)
]

= 〈pη〉λ−(p),
[

Q(η), λ−(p)
]

= − [pη] g−(p), (4.15)

where Q(η) = 〈Qη〉.
For each NMHV helicity sector, there are 20 distinct amplitudes related by N = 1 SWI:

a pure-gluon amplitude, a pure-gluino amplitude, nine two-gluino four-gluon amplitudes,
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〈g− g− g− g+ g+ g+〉

〈λ− g− g− λ+ g+ g+〉 · · · 〈g− λ− g− g+ λ+ g+〉 · · · 〈g− g− λ− g+ g+ λ+〉

〈λ− λ− g− λ+ λ+ g+〉 · · · 〈λ− g− λ− λ+ g+ λ+〉 · · · 〈g− λ− λ− g+ λ+ λ+〉

〈λ− λ− λ− λ+ λ+ λ+〉

Figure 1. Amplitudes related by N = 1 supersymmetric Ward identities.

and nine four-gluino two-gluon amplitudes, as shown in figure 1. In the following, we

assume that amplitudes are drawn from helicity configuration X in eq. (3.4). For the two

other configurations Y and Z, the relations are completely analogous.

Amplitudes in adjacent rows of figure 1 are related by the N = 1 SWI. Acting for exam-

ple with the supersymmetry operator Q(η) on the source term 〈g− g− g− λ+ g+ g+〉 yields

〈4η〉〈g− g− g− g+ g+ g+〉 − 〈1η〉〈λ− g− g− λ+ g+ g+〉+
− 〈2η〉〈g− λ− g− λ+ g+ g+〉 − 〈3η〉〈g− g− λ− λ+ g+ g+〉 = 0 , (4.16)

which relates the pure-gluon amplitude to the two-gluino four-gluon ones from the second

row in figure 1. Due to the freedom in choosing the two-component supersymmetry param-

eter η, the result is a system of equations which has rank 2. In order to find all relations

between the pure gluon amplitude (first row) and the amplitudes in the second row, the

action of Q(η) on all possible source terms featuring one gluino and five gluons,

〈λ− g− g− g+ g+ g+〉, 〈g− λ− g− g+ g+ g+〉, 〈g− g− λ− g+ g+ g+〉,
〈g− g− g− λ+ g+ g+〉, 〈g− g− g− g+ λ+ g+〉, 〈g− g− g− g+ g+ λ+〉, (4.17)

has to be considered. The resulting system, linking ten amplitudes from the first and sec-

ond rows, turns out to have rank eight, thus requiring two known amplitudes in order to

derive all the others.

Repeating the analysis for the second and third rows, there are notably more identities

to consider. They are generated by acting with Q(η) on any of the 18 different source

terms built from three gluinos and the same number of gluons, e.g. 〈λ− λ− g− g+ λ+ g+〉.
Interestingly this system connecting 18 unknown amplitudes is of rank 16, meaning that

again two amplitudes have to be known in order to fix all the others.

Finally, the relations between the third row and the pure-gluino amplitude (fourth

row) mirror the situation found for the top of the diagram and are also of rank eight.

Combining all of the above into one large system of equations, the total rank of the

supersymmetric Ward identities pictured in figure 1 turns out to be 18. So, given any

two of the 20 distinct amplitudes, one can calculate any other from this set employing the

complete collection of N = 1 SWI. The corresponding result has already been found by
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b

b

b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

N = 2

N = 1

N = 1

〈g−g−g−g+g+g+〉
〈g−g−λ−λ+g+g+〉
〈g−λ−λ−λ+λ+g+〉
〈λ−λ−λ−λ+λ+λ+〉
〈φ−λ−λ−λ+λ+φ+〉
〈φ−φ−λ−λ+φ+φ+〉
〈φ−φ−φ−φ+φ+φ+〉

Figure 2. Amplitudes involving particles from a single N = 2 multiplet containing two N = 1

subsets.

Grisaru and Pendleton in the context of N = 1 supergravity [10], and recast recently in

modern spinor-helicity form [61].

More explicitly, any two-gluino four-gluon amplitude Fi,I , with the gluinos situated at

positions i and I, can be expressed in terms of the pure-gluon and pure-gluino amplitudes as

Fi,I =
4〈Ij〉[ij]〈g−g−g−g+g+g+〉 − εijk〈jk〉εIJK [JK]〈λ−λ−λ−λ+λ+λ+〉

−2
∑

m,n∈{i,j,k}〈mn〉[nm]
, (4.18)

where i, j, k and I, J,K mark the set of negative and positive helicity particles respectively,

and the numerator contains implicit sums over j, k, J,K. For example,

F3,4 = 〈g−g−λ−λ+g+g+〉 =
〈4|(1 + 2)|3]〈g−g−g−g+g+g+〉 + 〈12〉[56]〈λ−λ−λ−λ+λ+λ+〉

(p1 + p2 + p3)2
.

(4.19)

A similar formula for all four-gluino two-gluon amplitudes can be found in the appendix

of ref. [61].

4.5 The second N = 1 SUSY diamond

Recall [68] that the pure-gluon amplitude can be calculated from the latter three amplitudes

in eq. (4.13), namely

〈φ−φ−φ−φ+φ+φ+〉, 〈φ−φ−λ−λ+φ+φ+〉 and 〈φ−φ−g−g+φ+φ+〉 . (4.20)

The question that immediately arises is whether this set forms a basis for the complete

set of all six-point NMHV N = 2 amplitudes4 in helicity configuration X. We were not

aware of a direct answer to that question, so we took the following approach. As men-

tioned already in subsection 4.2, we will consider a second set of six-point NMHV N = 1

supersymmetric Ward identities, in addition to the N = 1 SWI for (g±, λ±) described in

the previous subsection.

In figure 2 the collection of six-point NMHV N = 2 amplitudes is depicted in helicity

configuration X. Every black dot denotes a particular amplitude. The top point repre-

sents the pure-gluon amplitude 〈g−g−g−g+g+g+〉, the lowest point refers to the pure-scalar

4The term N = 2 amplitudes refers to all possible amplitudes that can be constructed exclusively from

particles from a single N = 2 multiplet and its CPT conjugate, (g±, λ±
m, φ±) with m = 1, 2 [89].
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amplitude 〈φ−φ−φ−φ+φ+φ+〉, and the central point denotes the pure-gluino amplitude

〈λ−λ−λ−λ+λ+λ+〉. Supersymmetric Ward identities relate certain amplitudes from adja-

cent rows and the elements of eq. (4.13) are encircled. The upper diamond-shaped region

corresponds precisely to figure 1: it is the subset of six-point NMHV N = 1 amplitudes

built from the multiplet (g±, λ±) within the N = 2 amplitudes. (There are additional

states in the full N = 2 diamond in figure 2, of course, even in the second row.)

However, the upper diamond-shaped region is not the only subset of six-point NMHV

N = 2 amplitudes which can be related by N = 1 supersymmetric Ward identities. Stretch-

ing between the pure-gluino and the pure-scalar amplitude there is a second region (referred

to as the lower diamond in the following), which satisfies relations similar to those in the up-

per N = 1 diamond. The modified supersymmetry operator Q̃ will now act on a multiplet

consisting of scalars (φ+, φ−) and gluinos (λ+, λ−) via
[

Q̃(η), φ+(p)
]

= 〈pη〉λ+(p),
[

Q̃(η), λ+(p)
]

= − [pη]φ+(p),
[

Q̃(η), φ−(p)
]

= [pη]λ−(p),
[

Q̃(η), λ−(p)
]

= −〈pη〉φ−(p) , (4.21)

which can be easily derived by identifying the supercharges of N = 2 supersymmetry, Q1

and Q2, with Q and Q̃ respectively.

Writing down the set of supersymmetric Ward identities generated by acting with a

supersymmetry generator Q̃ on the source term 〈φ−φ−φ−λ+φ+φ+〉, one encounters the

same structure derived in eq. (4.16):

[4η]〈φ−φ−φ−φ+φ+φ+〉 − [1η]〈λ−φ−φ−λ+φ+φ+〉+
− [2η]〈φ−λ−φ−λ+φ+φ+〉 − [3η]〈φ−φ−λ−λ+φ+φ+〉 = 0. (4.22)

In fact, one can show that the complete system of supersymmetric Ward identities and am-

plitudes for the lower diamond, ranging from the pure-gluino to the pure-scalar amplitude,

can be obtained from the original N = 1 system considered in figure 1 by exchanging

Q ↔ Q̃

[ ] ↔ 〈 〉
g+ ↔ φ+

g− ↔ φ−. (4.23)

This symmetry corresponds geometrically to reflecting figure 2 about a horizontal line

passing through the central point 〈λ−λ−λ−λ+λ+λ+〉.
The second system of supersymmetric Ward identities in the lower diamond is obviously

of the same rank as the original system. However, in contrast to the upper diamond it

contains two of the known amplitudes from ref. [68],

〈φ−φ−φ−φ+φ+φ+〉 and 〈φ−φ−λ−λ+φ+φ+〉 , (4.24)
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which allows the calculation of any other amplitude in the lower N = 1 set. In particular,

the pure-gluino amplitude 〈λ−λ−λ−λ+λ+λ+〉 ( in figure 2), which is the element con-

necting the upper and lower set of equations, can be determined. Having done so, there

are now two known amplitudes from the upper N = 1 diamond, the pure-gluino and the

pure-gluon amplitude [68], which in turn is the precondition for determining any amplitude

from the upper N = 1 region. In other words: any six-point NMHV amplitude in the two

shaded regions in figure 2 can be calculated from eq. (4.13).

In the next section, we will complete the ellipses on the left-hand side of the decompo-

sition (4.12) by two gravitini and two gravitons, and KLT-factorize the result in such a way

that the desired six-point closed-string (N = 8 supergravity) amplitude can be related to

a set of two-gluino four-gluon N = 4 SYM amplitudes. The SYM amplitudes are available

in turn by the two-step procedure described above.

5 E7(7) symmetry for α
′-corrected amplitudes?

As explained in the last section, the most accessible way of testing the double-soft scalar

limit relation is to calculate the N = 8 supergravity amplitude,

〈X1234 X1235 F 5+F−
4 B+ B−〉 = KLT

[

〈g− λ4+ g+ λ−
4 g+ g−〉L × 〈g+ λ−

5 λ5+ g− g+ g−〉R
]

,

(5.1)

a particular version of eq. (4.12). The determination of the right-hand side of eq. (5.1) will

be done by employing the two-step procedure described in the last subsection.

How should we obtain the pure-gluino amplitude 〈λ−λ−λ−λ+λ+λ+〉 from the ampli-

tudes in eq. (4.24) in the first step? An expression relating any six-point NMHV two-

fermion four-boson amplitude to the pure-fermion and pure-boson one has been given in

eq. (4.18). We start from eq. (4.19), employ the correspondence (4.23) which transforms

the pure-gluon amplitude into the pure-scalar one, and solve the resulting equation for the

pure-gluino amplitude:

〈λ−λ−λ−λ+λ+λ+〉= (p1 + p2 + p3)
2〈φ−φ−λ−λ+φ+φ+〉 − 〈3|(1 + 2)|4]〈φ−φ−φ−φ+φ+φ+〉

〈56〉[12] .

(5.2)

In the second step, we employ eq. (4.18) to obtain analytical expressions for all two-gluino

four-gluon amplitudes, allowing us to assemble finally the N = 8 amplitude.

In the same manner as explained in subsection 4.1 for the expansion to O(α′2) of a

five-point gravity amplitude, appropriate combinations of orders in α′ have to be added

and permuted on the right-hand side of eq. (5.1) in order to obtain the result including the

R4 perturbation. Explicitly, the third order in α′ can be obtained by evaluating

M
O(α′3)
6 =

−i

α′3
s12s45

(

ASYM
6 (1, 2, 3, 4, 5, 6)

×
[

s35A
O(α′3)
6 (2, 1, 5, 3, 4, 6) + (s34 + s35)A

O(α′3)
6 (2, 1, 5, 4, 3, 6)

]

+ A
O(α′3)
6 (1, 2, 3, 4, 5, 6)
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×
[

s35A
SYM
6 (2, 1, 5, 3, 4, 6) + (s34 + s35)A

SYM
6 (2, 1, 5, 4, 3, 6)

]

)

+ P(2, 3, 4) . (5.3)

All amplitudes needed on the right-hand side of eq. (5.3) are two-gluino four-gluon ampli-

tudes for the helicity configurations X, Y or Z, which we have related by supersymmetry

to the amplitudes considered in ref. [68].

Before discussing the double-soft limit relation, we examine the single-soft limits, test-

ing to see whether the vanishing (2.4) observed in N = 8 supergravity still holds for the

R4 matrix elements. For the four-point amplitude, the factor of s1s2(s1 +s2) in the O(α′3)

term in V
(4)
closed in eq. (3.21) shows that the R4 matrix element vanishes at least as fast as

the supergravity amplitude. Similarly, using the forms (3.12) for the open string five- and

six-point MHV amplitudes, together with the appropriate KLT relations, we find numeri-

cally that the single-soft limit of the five- and six-point MHV matrix elements of R4 vanish.

That is, we construct a sequence of kinematical configurations with the momentum of the

scalar tending to zero, and we find that the R4 matrix elements vanish. The vanishing is at

the same rate as for the supergravity amplitudes, linearly in the soft scalar momentum. (In

the MHV case, it is sufficient to test the single-soft vanishing for one particular amplitude

containing scalars, because all other MHV amplitudes are related by SWI involving ratios

of spinor products that are constant in the soft limit.)

On the other hand, when we examine the single-soft limit of the non-MHV six-point R4

matrix element (5.3) numerically, we find that it does not vanish.5 The question is whether

this implies the breaking of E7(7) symmetry by the R4 term. In principle there could be

modifications to the external scalar emission graphs that still allowed the symmetry to

be intact (as happens in the pion case). However, the R4 term does not produce any

nonvanishing on-shell three-point amplitudes. So it seems that the E7(7) symmetry is

indeed broken, beginning at the level of the non-MHV six-point amplitude.

One might wonder why the breaking shows up only at this level. If we consider the ten-

dimensional term e−2φt8t8R
4 discussed in the introduction, which becomes e−6φt8t8R

4 after

transforming to Einstein frame, one might suspect a violation of the single-soft limit from

the non-derivative φ coupling already at the five-point level, expanding e−6φ = 1−6φ+ · · · ,
and with R4 producing two negative and two positive helicity gravitons. However, in four

dimensions, the dilaton belongs to the 70 of SU(8), while the gravitons are singlets, so

a 〈φB−B−B+B+〉 amplitude is forbidden by SU(8). Adding another scalar corresponds

to providing a quadratic SU(8)-invariant scalar prefactor for R4, and first affects NMHV

six-point amplitudes.

Despite the apparent breaking of the E7(7) symmetry exhibited by the single-soft limit

of the NMHV six-point amplitude 〈X1234 X1235 F 5+F−
4 B+ B−〉 at O(α′3), we now proceed

to examine the double-soft limits of this amplitude. First, though, we turn to the right-hand

side of the double-soft limit relation (2.5). Given the particular choice of amplitude (5.1),

it is straightforward to find an expression for the right-hand side. The operator

T 4
5 = ε12345

12354 ηi5∂ηi4 = − ηi5∂ηi4 (5.4)

5We thank Juan Maldacena for suggesting that we examine this limit, and for related discussions.
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will act on the remnant of the six-point amplitude as

−
6

∑

i=3

ηi5∂ηi4〈F 5+F−
4 B+ B−〉

=

6
∑

i=3

ηi5∂ηi4

(

∂

∂η35

)(

1

7!
ε12345678

∂7

∂η41 . . . ∂η43∂η45 . . . ∂η48

)(

1

8!
ε12345678

∂8

∂η61 . . . ∂η68

)

Ω4

= 〈F 4+F−
4 B+ B−〉 − 〈F 5+F−

5 B+ B−〉 . (5.5)

Acting on particle 3, the operator changes the derivative with respect to η35 into a derivative

with respect to η34, thus effectively transforming the positive helicity gravitino F 5+ into

F 4+. Correspondingly, by acting on particle 4, again a derivative with respect to η45 will

be changed into one with respect to η44, this time transforming F−
4 into F−

5 .

Restoring the kinematical weight factors in eq. (2.5), the final comparison will be made

according to the following formula:

〈X1234 X1235 F 5+F−
4 B+ B−〉

∣

∣

∣

O(α′3)
→ (5.6)

→ 1

2

[

p3 · (p2 − p1)

p3 · (p1 + p2)
〈F 4+F−

4 B+ B−〉
∣

∣

∣

O(α′3)
− p4 · (p2 − p1)

p4 · (p1 + p2)
〈F 5+F−

5 B+ B−〉
∣

∣

∣

O(α′3)

]

.

Given the complexity of the higher-order α′ corrections in the available amplitudes (see

e.g. eq. (3.18) at only O(α′2)), the analytical computation of the left-hand side of eq. (5.6)

would be very cumbersome. Instead the computation and comparison have been performed

numerically for a sufficient number of kinematical points.

For reference, we give numerical values at one sample double-soft kinematical point,

with all outgoing momenta fulfilling p2
i = 0 and

∑6
i=1 pµ

i = 0:

p1 = (−0.853702542142, +0.696134406758, −0.306157335124, +0.387907984368)×10−4 ,

p2 = (+0.711159367201, −0.099704627834, −0.295472686856, +0.639142021830)×10−4 ,

p3 = (+0.818866370407, +0.408234512914, −0.661447772542, −0.257630664418),

p4 = (−1.098195656456, −0.551965696904, −0.598319787466, +0.737143813124),

p5 = (−0.618073260483, +0.143671541012, +0.362410922160, −0.479615853707),

p6 = (+0.897416800850, +0.000000000000, +0.897416800850, +0.000000000000).

(5.7)

At this point, with a particular external-state phase convention, the left- and right-hand

sides of the supergravity (O(α′0)) version of eq. (5.6) are given respectively by

− 0.30572232 − i 0.89270274 ≈ −0.30615989 − i 0.89271337 , (5.8)

while the desired O(α′3) terms in eq. (5.6) are,

3.08397954 + i 9.00278816 ≈ 3.08775134 + i 9.00339016 . (5.9)
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The difference between the left- and right-hand sides is due merely to the finite separation

of the point (5.7) from the double-soft limit. It can be made as small as desired by working

closer to the limit, using higher precision kinematics to avoid roundoff error.

The result is surprising: for any double-soft kinematical configuration considered, the

left- and the right-hand side of eq. (5.6) show complete agreement within numerical errors.

Given the available amplitudes from the two shaded regions in figure 2, one can perform

further tests for other N = 8 amplitudes. In addition to eq. (5.6), we have tested the

double-soft scalar limit for the following amplitudes

〈X1234 X1235 F 5+ F−
4 F 4+ F−

4 〉
∣

∣

∣

O(α′3)
−→

→ 1

2

[

+
p3 · (p2 − p1)

p3 · (p1 + p2)
〈F 4+F−

4 F 4+F−
4 〉

∣

∣

∣

O(α′3)

− p4 · (p2 − p1)

p4 · (p1 + p2)
〈F 5+F−

5 F 4+F−
4 〉

∣

∣

∣

O(α′3)

− p6 · (p2 − p1)

p6 · (p1 + p2)
〈F 5+F−

4 F 4+F−
5 〉

∣

∣

∣

O(α′3)

]

(5.10)

and

〈X1234 X1235 X1235 X1235 X1235 X1234〉
∣

∣

∣

O(α′3)
−→

→ 1

2

[

+
p3 · (p2 − p1)

p3 · (p1 + p2)
〈X1234 X1235 X1235 X1234〉

∣

∣

∣

O(α′3)

+
p5 · (p2 − p1)

p5 · (p1 + p2)
〈X1235 X1235 X1234 X1234〉

∣

∣

∣

O(α′3)

− p6 · (p2 − p1)

p6 · (p1 + p2)
〈X1235 X1235 X1235 X1235〉

∣

∣

∣

O(α′3)

]

. (5.11)

Each limit shows complete agreement for any double-soft kinematical point.

6 Conclusion

Our computation shows that the double-soft limit of three distinct six-point O(α′3)-

corrected N = 8 matrix elements yields the corresponding weighted sum of four-point

amplitudes, precisely as dictated by E7(7) invariance [49]. However, this is quite puzzling,

given the nonvanishing single-soft limits of the same six-point amplitudes. The most likely

possibility seems to be that the double-soft limits will begin to fail, but only beginning

with the NMHV seven-point amplitudes. It would be very interesting to test this limit,

but that is beyond the scope of the present paper.

Whether the three-loop cancellations [32, 33] can be explained by a simple symmetry

argument that originates in the
E7(7)

SU(8) coset symmetry of N = 8 supergravity is still open.

This work suggests that the R4 term produced by tree-level string theory can be ruled out

in this way, but other dependences on scalars should be considered. The work of Green

and Sethi [25] in ten dimensions indicates that supersymmetry may forbid any R4 term,

but an argument using supersymmetry directly in four dimensions would be very welcome.
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Of course there are higher-dimension potential counterterms than R4, which are rele-

vant beginning at five loops. It is possible that E7(7) and/or supersymmetry can be used

to exclude these counterterms as well, up to a certain dimension or loop order. How-

ever, at eight loops a counterterm exists that is invariant under both supersymmetry and

E7(7) [15, 59]. It is still possible that E7(7) plays a more subtle role in the excellent ultra-

violet behavior of the theory, perhaps by relating somehow the coefficients of certain loop

integrals making up the full multi-loop amplitude.

Completely understanding the role of E7(7) will very likely be part of a fundamental

explanation of the conjectured finiteness of N = 8 supergravity. However, whether super-

symmetry and the coset symmetry alone are sufficient ingredients remains to be shown.
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