40 research outputs found

    Single Crystal Growth of FeGa3 and FeGa3−xGex from High‐Temperature Solution Using the Czochralski Method

    Get PDF
    Single crystal growth and characterization of the binary semiconducting compound FeGa3 and its Ge‐substitute FeGa3–xGex are reported. Whereas there have been several investigations on the thermoelectric properties based on small samples grown by the flux method, this study is the first approach using the Czochralski growth technique from well‐oriented single‐crystalline seeds. Problems and solutions of the growth of cm3‐size single crystals are discussed in detail. Ge segregation in FeGa3–xGex is described by a segregation coefficient lower than unity which leads to an axially increasing Ge content along the pulling direction. Consequences with respect to lattice parameter changes and thermoanalytic measurements are reported

    Spin dynamics of FeGa3x_{3-x}Gex_x studied by Electron Spin Resonance

    Full text link
    The intermetallic semiconductor FeGa3_{3} acquires itinerant ferromagnetism upon electron doping by a partial replacement of Ga with Ge. We studied the electron spin resonance (ESR) of high-quality single crystals of FeGa3x_{3-x}Gex_x for xx from 0 up to 0.162 where ferromagnetic order is observed. For x=0x = 0 we observed a well-defined ESR signal, indicating the presence of pre-formed magnetic moments in the semiconducting phase. Upon Ge doping the occurrence of itinerant magnetism clearly affects the ESR properties below 40\approx 40~K whereas at higher temperatures an ESR signal as seen in FeGa3_{3} prevails independent on the Ge-content. The present results show that the ESR of FeGa3x_{3-x}Gex_x is an appropriate and direct tool to investigate the evolution of 3d-based itinerant magnetism.Comment: 12 pages, 7 figure

    Structure and binding in crystals of cage-like molecules: hexamine and platonic hydrocarbons

    Get PDF
    In this paper, we show that first-principle calculations using a van der Waals density functional (vdW-DF), [Phys. Rev. Lett. 92\mathbf{92}, 246401 (2004)] permits determination of molecular crystal structure. We study the crystal structures of hexamine and the platonic hydrocarbons (cubane and dodecahedrane). The calculated lattice parameters and cohesion energy agree well with experiments. Further, we examine the asymptotic accounts of the van der Waals forces by comparing full vdW-DF with asymptotic atom-based pair potentials extracted from vdW-DF. The character of the binding differ in the two cases, with vdW-DF giving a significant enhancement at intermediate and relevant binding separations. We analyze consequences of this result for methods such as DFT-D, and question DFT-D's transferability over the full range of separations

    van der Waals density functional calculations of binding in molecular crystals

    Full text link
    A recent paper [J. Chem. Phys. 132, 134705 (2010)] illustrated the potential of the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004)] for efficient first-principle accounts of structure and cohesion in molecular crystals. Since then, modifications of the original vdW-DF version (identified as vdW-DF1) has been proposed, and there is also a new version called vdW-DF2 [ArXiv 1003.5255], within the vdW-DF framework. Here we investigate the performance and nature of the modifications and the new version for the binding of a set of simple molecular crystals: hexamine, dodecahedrane, C60, and graphite. These extended systems provide benchmarks for computational methods dealing with sparse matter. We show that a previously documented enhancement of non-local correlations of vdW-DF1 over an asymptotic atom-based account close to and a few A, beyond binding separation persists in vdW-DF2. The calculation and analysis of the binding in molecular crystals requires appropriate computational tools. In this paper, we also present details on our real-space parallel implementation of the vdW-DF correlation and on the method used to generate asymptotic atom-based pair potentials based on vdW-DF.Comment: 5 pages, 4 figure

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore