7,870 research outputs found
Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking
Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined
changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap
mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge
305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike
riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL
· kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA
for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance
and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional
nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across
the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations
of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity
may be associated with dynamic regulation of self-paced exercise
Evaluating a Second Life PBL Demonstrator Project: What Can We Learn?
This article reports the findings of a demonstrator project to evaluate how effectively Immersive Virtual Worlds (IVWs) could support Problem-based Learning. The project designed, created and evaluated eight scenarios within Second Life (SL) for undergraduate courses in health care management and paramedic training. Evaluation was primarily qualitative, using illuminative evaluation which provided multiple perspectives through interviews, focus groups and questionnaires with designers, facilitators, learning technologists and students. Results showed that SL provided a rich, engaging environment which enhanced authenticity of the scenarios, though there were issues of access and usability. The article concludes by drawing together the lessons learned which will inform educators who seek to design and develop learning scenarios in this medium
Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV
Triple-differential cross sections for neutrons from high-multiplicity La-La
collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per
nucleon were measured at several polar angles as a function of the azimuthal
angle with respect to the reaction plane of the collision. The reaction plane
was determined by a transverse-velocity method with the capability of
identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons
was extracted from the slope at mid-rapidity of the curve of the average
in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the
participant neutrons was observed in a direction normal to the reaction plane
in the normalized momentum coordinates in the center-of-mass system.
Experimental results of the neutron squeeze-out were compared with BUU
calculations. The polar-angle dependence of the maximum azimuthal anisotropy
ratio was found to be insensitive to the mass of the colliding
nuclei and the beam energy. Comparison of the observed polar-angle dependence
of the maximum azimuthal anisotropy ratio with BUU calculations for
free neutrons revealed that is insensitive also to the
incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
Recommended from our members
Birds multiplex spectral and temporal visual information via retinal On- and Off-channels
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors
Recommended from our members
Problem-based learning approaches in meteorology
Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a current field course module, this project describes the implementation of two test Problem-Based Learning activities and testing and improvement using several different and complementary means of evaluation. By the end of a 2-year program of design, implementation, testing, and reflection and re-evaluation, two robust, engaging activities have been developed that provide an enhanced and diverse learning environment in the field course. The results suggest that Problem-Based Learning techniques would be a useful addition to the meteorology curriculum and suggestions for courses and activities that may benefit from this approach are included in the conclusions
Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions
Results on the target mass dependence of proton and pion pseudorapidity
distributions and of their azimuthal correlations in the target rapidity range
are presented. The data have been taken with the
Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley
BEVALAC and for 200 GeV/ p-, O-, and S-induced reactions on
different nuclei at the CERN-SPS. The yield of protons at backward rapidities
is found to be proportional to the target mass. Although protons show a typical
``back-to-back'' correlations, a ``side-by-side'' correlation is observed for
positive pions, which increases both with target mass and with impact parameter
of a collision. The data can consistently be described by assuming strong
rescattering phenomena including pion absorption effects in the entire excited
target nucleus.Comment: 7 pages, figures included, complete postscript available at
ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys.
Lett.
Limits on WWgamma and WWZ Couplings from W Boson Pair Production
The results of a search for W boson pair production in pbar-p collisions at
sqrt{s}=1.8 TeV with subsequent decay to emu, ee, and mumu channels are
presented. Five candidate events are observed with an expected background of
3.1+-0.4 events for an integrated luminosity of approximately 97 pb^{-1}.
Limits on the anomalous couplings are obtained from a maximum likelihood fit of
the E_T spectra of the leptons in the candidate events. Assuming identical
WWgamma and WWZ couplings, the 95 % C.L. limits are -0.62<Delta_kappa<0.77
(lambda = 0) and -0.53<lambda<0.56 (Delta_kappa = 0) for a form factor scale
Lambda = 1.5 TeV.Comment: 10 pages, 1 figure, submitted to Physical Review
Law and ethics: problematising the role of the foundation degree and paralegal education in English post-compulsory education
This article is based on research on a foundation degree programme in paralegal education in England. The content explores the pedagogical benefits of this academic programme with its work-related focus. The research has been completed with academic tutors and students who are associated with a foundation degree programme in paralegal education in the north of England. The researchers have adopted an ethnographic paradigm in their exploration of learning and teaching within this academic programme. The research is ‘field based’ as it is situated in a particular context and it has occurred over four years of investigation. The article advocates the development of a transformative learning ethos that is based on a sound philosophy of teaching and learning in order to support the development of understandings of ethics within a vocational foundation degree context. The originality of the article rests in the observation that paralegal education is ideally situated within a foundation degree structure due to its vocational emphasis and its philosophy of pedagogy. The combination of practical work experience on the foundation degree and a clear vision of pedagogy has led to the emergence of a vibrant curriculum within a post-compulsory educational context
- …