37 research outputs found

    Coupling leeside grainfall to avalanche characteristics in aeolian dune dynamics

    Get PDF
    Avalanche (grainflow) processes are fundamental drivers of dune morphodynamics and are typically initiated by grainfall accumulations. In sedimentary systems, however, the dynamism between grainfall and grainflow remains unspecified because simple measurements are hampered by the inherent instability of lee slopes. Here, for the first time, terrestrial laser scanning is used to quantify key aspects of the grainfall process on the lee (slip face) of a barchan sand dune. We determine grainfall zone extent and flux and show their variability under differing wind speeds. The increase in the downwind distance from the brink of peak grainfall under stronger winds provides a mechanism that explains the competence of large avalanches to descend the entire lee slope. These findings highlight important interactions between wind speed, grainfall, and subsequent grainflow that influence dune migration rates and are important for correct interpretation of dune stratigraphy

    Sources and pathways of dust during the Australian "Millennium Drought" decade

    Get PDF
    From the late 1990s to mid-2010, Australia was affected by a prolonged period of drought, the “Millennium Drought,” during which numerous severe dust storms crossed the continent. We inspect this period to produce the first continental-scale climatology of air-parcel trajectories that is specific to dust and use it to gain new insights into dust transport dynamics over the eastern half of Australia. The analysis is based upon dust arrival times from airport meteorological observations made at nine mostly coastal cities for 2000–2009. The Hybrid Single-Particle Lagrangian Integrated Trajectory model was used to calculate 1.26 million backward trajectories from receptor cities, with only those trajectories associated with a dust storm observation considered in the analysis of dust transport. To tie dust trajectories from receptors to likely emission sources, trajectories were linked to six known major dust source regions in and around the Lake Eyre Basin. The Lake Eyre North ephemeral lake system, alluvial-dominated Channel Country, and agricultural Mallee-Riverina regions emerge as important sources for the period, providing variable contributions to different parts of the seaboard as controlled by different front-related wind systems. Our study also provides new detail regarding dust pathways from continental Australia. For the Millennium Drought we identify that the broadly established Southeast Dust Path may be more accurately subdivided into three active pathways, driven by prefrontal northerly winds and a variation in the influence of frontal westerlies. The detail of these pathways has implications for dust delivery from specific Australian sources to different marine environmentsThe authors gratefully acknowledge the Australian Research Council (DP0772180) for funding this research

    Temperature dependence of threshold current in p-doped quantum dot lasers

    Get PDF
    The authors measure the temperature dependence of the components of threshold current of 1300?nm undoped and p-doped quantum dot lasers and show that the temperature dependence of the injection level necessary to achieve the required gain is the largest factor in producing the observed negative T0 in p-doped quantum dot lasers

    Field evidence for the upwind velocity shift at the crest of low dunes

    Full text link
    Wind topographically forced by hills and sand dunes accelerates on the upwind (stoss) slopes and reduces on the downwind (lee) slopes. This secondary wind regime, however, possesses a subtle effect, reported here for the first time from field measurements of near-surface wind velocity over a low dune: the wind velocity close to the surface reaches its maximum upwind of the crest. Our field-measured data show that this upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first order closures. This effect, together with sand transport spatial relaxation, is at the origin of the mechanisms of dune initiation, instability and growth.Comment: 13 pages, 6 figures. Version accepted for publication in Boundary-Layer Meteorolog

    A North American dust emission climatology (2001–2020) calibrated to dust point sources from satellite observations

    Get PDF
    Measurements of atmospheric dust have long influenced our understanding of dust sources and dust model calibration. However, assessing dust emission magnitude and frequency may reveal different dust source dynamics and is critical for informing land management. Here we use MODIS (500 m) albedo-based daily wind friction estimates to produce a new dust emission climatology of North America (2001–2020), calibrated by the novel use of dust point sources from optical satellite observations (rather than being tuned to dust in the atmosphere). Calibrated dust emission occurred predominantly in the biomes of the Great Plains (GP) and North American Deserts (NAD), in broad agreement with maps of aerosol optical depth and dust deposition but with considerably smaller frequency and magnitude. Combined, these biomes produced 7.2 Tg y-1 with contributions split between biomes (59.8% NAD, 40.2% GP) due to the contrasting conditions. Dust emission is dependent on different wind friction conditions on either side of the Rocky Mountains. In general, across the deserts, aerodynamic roughness was persistently small and dust sources were activated in areas prone to large wind speeds; desert dust emissions were wind speed limited. Across the Great Plains, large winds persist, and dust emission occurred when vegetation cover was reduced; vegetated dust emissions were roughness limited. We found comparable aerodynamic roughness exists across biomes/vegetation classes demonstrating that dust emission areas are not restricted to a single biome, instead they are spread across an ‘envelope’ of conducive wind friction conditions. Wind friction dynamics, describing the interplay between changing vegetation roughness (e.g., due to climate and land management) and changing winds (stilling and its reversal), influence modelled dust emission magnitude and frequency and its current and future climatology. We confirm previous results that in the second half of the 21st century the southern Great Plains is the most vulnerable to increased dust emission and show for the first time that risk is due to increased wind friction (by decreased vegetation roughness and / or increased wind speed). Regardless of how well calibrated models are to atmospheric dust, assuming roughness is static in time and / or homogeneous over space, will not adequately represent current and future dust source dynamics

    High-latitude dust in the Earth system

    Get PDF
    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios

    Long-term outcomes of early childhood science education: insight from a cross-national comparative case study on conceptual understanding of science

    Get PDF
    The purpose of this research was to explore the long term outcomes of either participating or not participating in early childhood science education on Grade 6 students’ conceptual understanding of science. The research is situated in a conceptual framework that evokes Piagetian developmental levels as both potential curriculum constraints and potential models of efficacy. The research design was a multiple case study of Grade 6 children from three schools in China (n=140) who started formal science education in the third grade, and Grade 6 children from three matched schools in Australia (n=105) who started learning science in kindergarten. The students’ understanding was assessed by a science quiz and in-depth interview. The data showed that participating children from the high socio-economic schools in China and Australia had similar understandings of science. Divergence between the medium and low socio-economic schools, however, indicated that the grounding in early childhood science education in Australia may have placed these children at an advantage. Alternative explanations for the divergence including the nature of classroom instruction in the two countries are discussed
    corecore