62 research outputs found

    Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution

    Get PDF
    It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with “micro-resolution” at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a “habitat-shift” into bulk water. Second, the protocell stage started with a substage of “pseudo-protocells”, with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent “true-protocell” substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the emergence of single “genes”, but before the appearance of a “chromosome” with linked genes

    Empirical Evaluation of Bone Extraction Protocols

    Get PDF
    The application of high-resolution analytical techniques to characterize ancient bone proteins requires clean, efficient extraction to obtain high quality data. Here, we evaluated many different protocols from the literature on ostrich cortical bone and moa cortical bone to evaluate their yield and relative purity using the identification of antibody-antigen complexes on enzyme-linked immunosorbent assay and gel electrophoresis. Moa bone provided an ancient comparison for the effectiveness of bone extraction protocols tested on ostrich bone. For the immunological part of this study, we focused on collagen I, osteocalcin, and hemoglobin because collagen and osteocalcin are the most abundant proteins in the mineralized extracellular matrix and hemoglobin is common in the vasculature. Most of these procedures demineralize the bone first, and then the remaining organics are chemically extracted. We found that the use of hydrochloric acid, rather than ethylenediaminetetraacetic acid, for demineralization resulted in the cleanest extractions because the acid was easily removed. In contrast, the use of ethylenediaminetetraacetic acid resulted in smearing upon electrophoretic separation, possibly indicating these samples were not as pure. The denaturing agents sodium dodecyl sulfate, urea, and guanidine HCl have been used extensively for the solubilization of proteins in non-biomineralized tissue, but only the latter has been used on bone. We show that all three denaturing agents are effective for extracting bone proteins. One additional method tested uses ammonium bicarbonate as a solubilizing buffer that is more appropriate for post-extraction analyses (e.g., proteomics) by removing the need for desalting. We found that both guanidine HCl and ammonium bicarbonate were effective for extracting many bone proteins, resulting in similar electrophoretic patterns. With the increasing use of proteomics, a new generation of scientists are now interested in the study of proteins from not only extant bone but also from ancient bone

    Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome

    Get PDF
    YesHuman identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.The Technology Commercialization Innovation Program (Contracts #121668, #132043) of the Utah Governors Office of Commercial Development, the Scholarship Activitie

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring

    Biomedical Discovery Acceleration, with Applications to Craniofacial Development

    Get PDF
    The profusion of high-throughput instruments and the explosion of new results in the scientific literature, particularly in molecular biomedicine, is both a blessing and a curse to the bench researcher. Even knowledgeable and experienced scientists can benefit from computational tools that help navigate this vast and rapidly evolving terrain. In this paper, we describe a novel computational approach to this challenge, a knowledge-based system that combines reading, reasoning, and reporting methods to facilitate analysis of experimental data. Reading methods extract information from external resources, either by parsing structured data or using biomedical language processing to extract information from unstructured data, and track knowledge provenance. Reasoning methods enrich the knowledge that results from reading by, for example, noting two genes that are annotated to the same ontology term or database entry. Reasoning is also used to combine all sources into a knowledge network that represents the integration of all sorts of relationships between a pair of genes, and to calculate a combined reliability score. Reporting methods combine the knowledge network with a congruent network constructed from experimental data and visualize the combined network in a tool that facilitates the knowledge-based analysis of that data. An implementation of this approach, called the Hanalyzer, is demonstrated on a large-scale gene expression array dataset relevant to craniofacial development. The use of the tool was critical in the creation of hypotheses regarding the roles of four genes never previously characterized as involved in craniofacial development; each of these hypotheses was validated by further experimental work

    Mexico's Michoacán state: mixed migration flows and transnational links

    No full text
    Against a backdrop of unremitting violence in Mexico, traditional migration patterns in the North American corridor are being reconfigured

    Living on the margins of democratic representation: Social connected community responsibility as Civic engagement in an incorporated area

    No full text
    We examine the civic engagement processes and practices among Viva Live Oak! photovoice project participants residing in an unincorporated area with limited local democratic representation and institutional resources. Eight individual interviews and thirty‐one group photovoice meetings were conducted, audio recorded, transcribed, and analyzed. We describe how social structures of unincorporation shaped community life, and how this unique context informed participants’ civic engagement. We argue for a conceptualization of civic engagement that centers a social connection model of community responsibility, to make legible the social, relational, and civic actions of unincorporated area residents
    corecore