10 research outputs found

    Study of Core 92AR-P25 from the Northwind Ridge, Central Arctic Ocean

    Get PDF
    The Arctic Ocean is presently the least understood ocean in the world. The perennial sea ice that covers most of the Arctic has hindered exploration and interpretation of this last remaining portion of the Earth’s surface. The geologic history of this ocean is not fully understood and needs to be studied in greater detail. The stratigraphic record in the Arctic is a topic of much debate, specifically when discussing ages and sedimentation rates. Various ways of age dating has shed new light on ages and sedimentation rates of the established stratigraphy. Proxies such as microfossils and isotope evidence are giving us new insights to the paleoceanography of the Arctic Ocean basin. Core 92AR-P25 from the Northwind Ridge shows correlation with the paleomagnetic time scale and agreement with the manganese color cycles proposed by Jakobsson et al, (2000). The correlation of the core, shows that many cores throughout the Central Arctic Ocean can be similarly correlated, allowing us to form a paleoceanography history of the Arctic Ocean

    Expedition 302 summary

    No full text
    The first scientific drilling expedition to the central Arctic Ocean was completed in September 2004. Integrated Ocean Drilling Program Expedition 302, Arctic Coring Expedition (ACEX), recovered sediment cores to 428 meters below seafloor (mbsf) in water depths of ~1300 m, 250 km from the North Pole.Expedition 302's destination was the Lomonosov Ridge, hypothesized to be a sliver of continental crust that broke away from the Eurasian plate at ~56 Ma. As the ridge moved northward and subsided, marine sedimentation occurred and continues to the present, resulting in what was anticipated from seismic data to be a continuous paleoceanographic record. The elevation of the ridge above the surrounding abyssal plains (~3 km) ensured that sediments atop the ridge were free of turbidites. The primary scientific objective of Expedition 302 was to continuously recover this sediment record and to sample the underlying sedimentary bedrock by drilling and coring from a stationary drillship.The biggest challenge during Expedition 302 was maintaining the drillship's location while drilling and coring in 2–4 m thick sea ice that moved at speeds approaching 0.5 kt. Sea-ice cover over the Lomonosov Ridge moves with one of the two major Arctic sea-ice circulation systems, the Transpolar Drift, and responds locally to wind, tides, and currents. Until now, the high Arctic Ocean Basin, known as "mare incognitum" within the scientific community, had never before been deeply cored because of these challenging sea-ice conditions.Initial results reveal that biogenic carbonate is present only in the Holocene–Pleistocene interval. The upper 198 mbsf represents a relatively high sedimentation rate record of the past 18 m.y. and is composed of sediment with ice-rafted debris and dropstones, suggesting that ice-covered conditions extended at least this far back in time. Details of the ice type (e.g., iceberg versus sea ice), timing, and characteristics (e.g., perennial versus seasonal) await further study. A hiatus occurs at 193.13 mbsf, spanning a 25 m.y. interval from the early Miocene to the middle Eocene between ~18 Ma and 43 Ma. The sediment record during the middle Eocene is of dark, organic-rich biosiliceous composition. Isolated pebbles, interpreted as ice-rafted dropstones, are present down to 239 mbsf, well into this middle Eocene interval. Around the lower/middle Eocene boundary an abundance of Azolla spp. occurs, suggesting that a fresh and/or low-salinity surface water setting dominated the region during this time period. Although predrilling predictions based on geophysical data had placed the base of the sediment column at 50 Ma, drilling revealed that the uppermost Paleocene to lowermost Eocene boundary interval, well known as the Paleocene/Eocene Thermal Maximum (PETM), was recovered. During the PETM, the temperature of the Arctic Ocean surface waters exceeded 20°C.Drilling during Expedition 302 also penetrated into the underlying sedimentary bedrock, revealing a shallow-water depositional environment of Late Cretaceous age

    Expedition 302 summary

    Get PDF
    The first scientific drilling expedition to the central Arctic Ocean was completed in September 2004. Integrated Ocean Drilling Program Expedition 302, Arctic Coring Expedition (ACEX), recovered sediment cores to 428 meters below seafloor (mbsf) in water depths of ~1300 m, 250 km from the North Pole. Expedition 302’s destination was the Lomonosov Ridge, hypothesized to be a sliver of continental crust that broke away from the Eurasian plate at ~56 Ma. As the ridge moved northward and subsided, marine sedimentation occurred and continues to the present, resulting in what was anticipated from seismic data to be a continuous paleoceanographic record. The elevation of the ridge above the surrounding abyssal plains (~3 km) ensured that sediments atop the ridge were free of turbidites. The primary scientific objective of Expedition 302 was to continuously recover this sediment record and to sample the underlying sedimentary bedrock by drilling and coring from a stationary drillship. The biggest challenge during Expedition 302 was maintaining the drillship’s location while drilling and coring in 2–4 m thick sea ice that moved at speeds approaching 0.5 kt. Sea-ice cover over the Lomonosov Ridge moves with one of the two major Arctic sea-ice circulation systems, the Transpolar Drift, and responds locally to wind, tides, and currents. Until now, the high Arctic Ocean Basin, known as “mare incognitum” within the scientific community, had never before been deeply cored because of these challenging sea-ice conditions. Initial results reveal that biogenic carbonate is present only in the Holocene–Pleistocene interval. The upper 198 mbsf represents a relatively high sedimentation rate record of the past 18 m.y. and is composed of sediment with ice-rafted debris and dropstones, suggesting that ice-covered conditions extended at least this far back in time. Details of the ice type (e.g., iceberg versus sea ice), timing, and characteristics (e.g., perennial versus seasonal) await further study. A hiatus occurs at 193.13 mbsf, spanning a 25 m.y. interval from the early Miocene to the middle Eocene between ~18 Ma and 43 Ma. The sediment record during the middle Eocene is of dark, organic-rich biosiliceous composition. Isolated pebbles, interpreted as ice-rafted dropstones, are present down to 239 mbsf, well into this middle Eocene interval. Around the lower/middle Eocene boundary an abundance of Azolla spp. occurs, suggesting that a fresh and/or low-salinity surface water setting dominated the region during this time period. Although predrilling predictions based on geophysical data had placed the base of the sediment column at 50 Ma, drilling revealed that the uppermost Paleocene to lowermost Eocene boundary interval, well known as the Paleocene/Eocene Thermal Maximum (PETM), was recovered. During the PETM, the temperature of the Arctic Ocean surface waters exceeded 20°C. Drilling during Expedition 302 also penetrated into the underlying sedimentary bedrock, revealing a shallow-water depositional environment of Late Cretaceous age

    Organophosphate Ester Flame Retardants and Plasticizers in ocean sediments from the North Pacific to the Arctic Ocean

    Get PDF
    The occurence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ7OPEs (total concentration of the observed OPEs) was in the range of 159–4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ7OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17–292) tons for Σ7OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic

    IODP Preliminary Report

    Full text link

    Les actinides dans les sédiments quaternaires de l'océan Arctique

    Get PDF
    Le rôle de l'océan Arctique dans le climat global est important. Les apports d'eau douce sont essentiels au maintien de la couche de faible salinité à la surface de l'océan qui permet la formation de la glace de mer. Les variations du budget d'eau douce influencent donc l'étendue du couvert de glace. Les variations du couvert de glace modifient l'albédo, le budget énergétique et les conditions de salinité et de température des masses d'eaux superficielles qui, à leur tour, influencent le climat global. Dans le contexte des changements climatiques actuels, il est indispensable de reconstituer l'histoire climatique de l'océan Arctique, en particulier au cours des cycles glaciaires-interglaciaires récents, afin de comprendre sa variabilité naturelle. L'étude paléoclimatique de l'océan Arctique a été entreprise dès les années 60 sur la base d'analyses des enregistrements sédimentaires livrés par des carottes de forage. Les sédiments situés sur les plateaux continentaux (30% de la surface de l'océan Arctique) sont caractérisés par des hauts taux de sédimentation qui permettent des études paléoclimatiques de haute résolution. Les bassins profonds et les rides connaissent des taux de sédimentation beaucoup plus faibles autorisant des études sur une plus grande échelle de temps. Ce sont de tels enregistrements qui ont été utilisés dans la présente thèse dont l'objectif principal consistait à établir des éléments de chronologie de la sédimentation grâce à l'étude des actinides. Le premier chapitre concerne le comportement des isotopes à courte période dans les sédiments de sub-surface de l'océan Arctique en relation avec les larges gradients de vitesse de sédimentation. L'étude a été focalisée sur le 210Pb, analysé dans neuf carottages courts (multicores) représentant des environnements différents (plateau, ride, etc.) afin de déterminer les conditions de son utilisation éventuelle aux fins de détermination des vitesses de sédimentation récentes. Deux multicores provenant de la ride de Mendeleiv ont été étudiés en détail et ont permis de mettre en évidence les particularités du comportement des actinides ascendants dans les environnements caractérisés par de très faibles taux de sédimentation. On a pu démontrer que sous de telles conditions, le profil de 210Pb était rapidement contrôlé par son ascendant, le 226Ra, lui même contrôlé par le 230Th ascendant. De plus, les budgets de 210Pb estimés dans ces deux mu1ticores indiquent que le 210Pb du sédiment correspond à la somme des sources atmosphériques et de la colonne d'eau, à une profondeur de ~1600 m. Par contre, un déficit s'observe dans la colonne sédimentaire, plus bas, à ~2500 m de profondeur. Il permet de conclure à un transport latéral du 210Pb ou à une capacité limitée d'adsorption particulaire, au delà de 1600 m de profondeur. Le deuxième chapitre présente une étude sédimentologique, minéralogique et géochimique détaillée des deux multicores utilisés dans le chapitre I. Les outils stratigraphiques courants (14C, 18O) s'avèrent peu concluants dans un tel contexte sédimentologique. Nous avons donc utilisé le 230Th et le 231Pa pour établir des éléments de chronostratigraphie. Deux régimes distincts ont été observés, l'un correspondant aux périodes glaciaires où la sédimentation est caractérisée exclusivement par les apports sédimentaires des glaces flottantes (Ice Rafted Debris, IRD), l'autre correspondant aux périodes interglaciaires et déglaciations, marquées par des flux sédimentaires plus élevés et des apports plus fins issus de l'archipel de l'Arctique Canadien, et un contenu micro-faunistique (foraminifères) peu abondant. En se basant sur les caractéristiques géochimiques et sédimentaires des deux régimes et les éléments de chronologie issus des données 230Th et 231Pa, on a mis en évidence la présence d'un transport latéral en 230Th et 231Pa dans les sédiments glaciaires. Le troisième chapitre présente des données géochimiques et sédimentologiques provenant de la ride Lomonossov. Cette ride, au centre de l'océan Arctique, est marquée par des vitesses de sédimentation plus élevées. La séquence sédimentaire examinée correspond ainsi aux derniers 25 000 ans. Un événement sédimentaire ponctuel, daté à ~12 000 ans (chronologie 14C calibrée), rend compte d'une source sédimentaire de l'Arctique Canadien. Cet événement correspondrait au Dryas récent (Younger Dryas-YD). Cette observation est l'une des premières observations d'origine marine de la débâcle du Lac Agassiz vers le nord, proposée par divers auteurs. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Océan Arctique, Paléocéanographie, Quaternaire, Actinide

    Reconstruction of late Quaternary sedimentary environments at the southern Mendeleev Ridge (Arctic Ocean)

    Get PDF
    The late Pleistocene history of the Arctic comprised cyclical changes in the extension of land-based ice sheets and sea-ice cover that affected sedimentary environments in the Arctic Ocean. This PhD thesis focuses on sediment records from the Mendeleev Ridge spanning the last 200 ka. Over this time period, variable sedimentation patterns were described and possible implications for reconstruction of glacial/interglacial paleoenvironments were provided. One of the main goals of this study was to identify mineralogical and inorganic-geochemical tracers in marine sediments that could be used for discrimination of sediment provenance and consequently for reconstruction of sediment pathways

    Production and preservation of the Arctic sea ice diatom biomarker IP25

    Get PDF
    The presence of the sea ice biomarker IP25 in Arctic marine sediments has previously been used as a proxy measure of past sea ice conditions in the Arctic. Although the sea ice diatom origin of IP25 was established previously, the nature of its production within sea ice, along with its transport through the water column to underlying sediments and its short-term preservation therein, had not been investigated in any significant detail. Variations in the concentration of the sea ice diatom biomarker IP25, were measured in sea ice collected from the eastern Beaufort Sea and Amundsen Gulf from January to June 2008. Temporal and vertical changes in IP25 concentrations were compared against other established indicators of sea ice algal production to determine, for the first time, that approximately 90% of the total sea ice IP25 accumulation occurred coincident with the ice algal bloom period. It was further established that IP25 biosynthesis was restricted, by sea ice porosity, to within the lower few centimetres of the sea ice and specifically to where brine volume fractions were >5%. Concentration differences of IP25 between sea ice and filtered seawater samples were also compared with those of established lipid indicators of algal production to estimate the dispersion of these lipids following seasonal sea ice melt. The largest concentration differences between sea ice and seawater samples were observed for IP25 and some other HBIs, consistent with a sea ice origin, while concentrations of fatty acids and sterols suggested contributions from both sea ice and phytoplankton. A novel analysis of a range of macrofaunal species revealed the presence of IP25 and other HBIs, with distributions somewhat resembling those observed in sea ice but more closely reflecting distributions of HBIs measured in sediments. As such, it is hypothesised that IP25 and HBI distributions in macrofaunal species reflect those of the sediments in which they live. The presence of IP25 and HBIs in macrofaunal species revealed, for the first time, a significant potential for biological cycling and storage of IP25 and other HBIs in the Arctic resulting from exposure during transport of the biomarker between sea ice and sediment. The observed presence of IP25 in 75% of the specimens investigated has presented important evidence for the potential of IP25 to act as a tracer of Arctic sea ice diet in the marine food web. Measurement of the downcore profiles of IP25 in shallow marine sediments alongside other biogeochemical parameters provided new evidence for the early diagenesis of this biomarker. Statistical correlations between some IP25 and Mn/Ti profiles (Station 405b; r = 0.89), that aid determination of the oxygen penetration depth, provided novel evidence for the partial degradation of IP25 (and other HBIs) in the upper sediment sections considered to be oxic. As such, it is suggested here, for the first time, that reactions under oxic conditions could be responsible for degradation of HBIs in some Arctic marine sediments, with the supply of organic carbon influential on the depth of oxygen penetration. The observations recorded in this thesis have therefore offered a much greater understanding of the concentration and distribution of IP25 and related lipids in a wide range of Arctic environments including sea ice, seawater, macrofauna and sediments, than was previously known. Since in most cases these observations represent the first of their kind, it is anticipated that the work carried out here will play an important role, forming the foundation of many important future studies.NER
    corecore