2,928 research outputs found

    Assessment of International Tourists\u27 Perception on Local Foods in Tanzania

    Get PDF
    Consumption of local food is broadly recognized as an essential part of tourists’ experience. Locally distinctive food can be important both as a tourism attraction in itself and in helping to shape the image of a destination. Local food experiences have the potential to contribute considerably to sustainable development, help maintain regional identities and support agricultural diversification. While local foods have the potential to reduce poverty in rural communities, their image and perception to tourists remain largely unexamined. The aim of this paper is to evaluate the way international tourists perceive local food in Tanzania. Data was collected using questionnaires (N = 540) at Kilimanjaro International Airport (KIA), which serves tourists who have just completed their visits from the most popular “Northern Circuit” of Tanzania National Parks. The findings show that (74.5%) of the respondents agreed that overall local food was of good quality and (58.5%) agreed that local food was safe to eat. However, respondents felt strongly that the hotels they stayed in did not provide many varieties of local foods (42.3%) or sufficient information about local foods (36.5%)

    Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia

    Get PDF
    The Amazon Basin is a unique region to study atmospheric aerosols, given their relevance for the regional hydrological cycle and the large uncertainty of their sources. Multi-year datasets are crucial when contrasting periods of natural conditions and periods influenced by anthropogenic emissions. In the wet season, biogenic sources and processes prevail, and the Amazonian atmospheric composition resembles preindustrial conditions. In the dry season, the basin is influenced by widespread biomass burning emissions. This work reports multi-year observations of high time resolution submicrometer (10-600 nm) particle number size distributions at a rain forest site in Amazonia (TT34 tower, 60 km NW from Manaus city), between 2008 and 2010 and 2012 and 2014. The median particle number concentration was 403 cm(-3) in the wet season and 1254 cm(-3) in the dry season. The Aitken mode (similar to 30-100 nm in diameter) was prominent during the wet season, while the accumulation mode (similar to 100-600 nm in diameter) dominated the particle size spectra during the dry season. Cluster analysis identified groups of aerosol number size distributions influenced by convective downdrafts, nucleation events and fresh biomass burning emissions. New particle formation and subsequent growth was rarely observed during the 749 days of observations, similar to previous observations in the Amazon Basin. A stationary 1-D column model (ADCHEM Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer model) was used to assess the importance of the processes behind the observed diurnal particle size distribution trends. Three major particle source types are required in the model to reproduce the observations: (i) a surface source of particles in the evening, possibly related to primary biological emissions; (ii) entrainment of accumulation mode aerosols in the morning; and (iii) convective downdrafts transporting Aitken mode particles into the boundary layer mostly during the afternoon. The latter process has the largest influence on the modeled particle number size distributions. However, convective downdrafts are often associated with rain and, thus, act as both a source of Aitken mode particles and a sink of accumulation mode particles, causing a net reduction in the median total particle number concentrations in the surface layer. Our study shows that the combination of the three mentioned particle sources is essential to sustain particle number concentrations in Amazonia.Peer reviewe

    Biogeophysical impacts of peatland forestation on regional climate changes in Finland

    Get PDF
    Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change

    Radial Distribution of Dust Grains Around HR 4796A

    Get PDF
    We present high-dynamic-range images of circumstellar dust around HR 4796A that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3, 12.5 and 24.5 um. We also present a new continuum measurement at 350 um obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively, and confirms the presence of an outer ring centered at 70 AU. Unresolved excess infrared emission is also detected at the stellar position and must originate well within 13 AU of the star. A model of dust emission fit to flux densities at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from the star with effective size, 28+/-6 um, and an associated temperature of 260+/-40 K. We simulate all extant data with a simple model of exozodiacal dust and an outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck thermal infrared and HST scattered-light images. Bayesian parameter estimates yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from the star and an outer-dust disk composed of a narrow large-grain ring embedded within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area 90 AU^2. Dust grains in the narrow ring are about 10 times larger and have lower albedos than those in the wider ring. These properties are consistent with a picture in which radiation pressure dominates the dispersal of an exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13 pages, 10 figures, 2 table

    Clopidogrel and Gemfibrozil Strongly Inhibit the CYP2C8-Dependent Formation of 3-Hydroxydesloratadine and Increase Desloratadine Exposure In Humans

    Get PDF
    A recent in vitro study suggested that CYP2C8 is essential in the metabolism of desloratadine, an H1 receptor antagonist. If the proposed biotransformation mechanism takes place in vivo in humans, desloratadine could serve as a selective CYP2C8 probe substrate in drug-drug interaction studies. Glucuronide metabo-lites of clopidogrel and gemfibrozil act as time-dependent inhibitors of CYP2C8, but they have not been compared clinically. We conducted a randomized crossover study in 11 healthy subjects to characterize the involvement of CYP2C8 in desloratadine metabolism and to compare the CYP2C8 inhibitory strength of clopidogrel (300 and 75 mg on two following days) with that of gemfibrozil (600 mg BID for 5 days). Compared with placebo (control), clopidogrel increased the area under the plasma concentration-time curve (AUC(0-infinity)) and peak plasma concentration (C-max) of desloratadine to 280% (P = 3 x 10(-7)) and 165% (P = 0.0006), respectively. The corresponding increases by gemfibrozil were to 462% (P = 4 x 10(-7)) and 174% (P = 0.0006). Compared with placebo, clopidogrel and gemfibrozil decreased 3-hydroxyloratadine AUC(0-71h) to 52% (P = 5 x 10(-5)) and 6%(P = 2 X 10(-8)), respectively. Moreover, the 3-hydroxydesloratadine: desloratadine AUC(0-71h) ratios were 21% (P = 7 x 10(-10)) and 1.7% (P = 8 x 10(-11)) of control during the clopidogrel and gemfibrozil phases. Our results confirm that CYP2C8 plays a critical role in the formation of 3-hydroxydesloratadine in humans, making desloratadine a potential CYP2C8 probe substrate. Furthermore, the findings corroborate the previous estimates that clinically relevant doses of clopidogrel cause strong CYP2C8 inhibition, whereas those of gemfibrozil almost completely inactivate the enzyme in humans.Peer reviewe

    The effects of intravenous lipid emulsion on hemodynamic recovery and myocardial cell mitochondrial function after bupivacaine toxicity in anesthetized pigs

    Get PDF
    Local anesthetic toxicity is thought to be mediated partly by inhibition of cardiac mitochondrial function. Intravenous (i.v.) lipid emulsion may overcome this energy depletion, but doses larger than currently recommended may be needed for rescue effect. In this randomized study with anesthetized pigs, we compared the effect of a large dose, 4 mL/kg, of i.v. 20% Intralipid (R) (n = 7) with Ringer's acetate (n = 6) on cardiovascular recovery after a cardiotoxic dose of bupivacaine. We also examined mitochondrial respiratory function in myocardial cell homogenates analyzed promptly after needle biopsies from the animals. Bupivacaine plasma concentrations were quantified from plasma samples. Arterial blood pressure recovered faster and systemic vascular resistance rose more rapidly after Intralipid than Ringer's acetate administration (p <0.0001), but Intralipid did not increase cardiac index or left ventricular ejection fraction. The lipid-based mitochondrial respiration was stimulated by approximately 30% after Intralipid (p <0.05) but unaffected by Ringer's acetate. The mean (standard deviation) area under the concentration-time curve (AUC) of total bupivacaine was greater after Intralipid (105.2 (13.6) mg.min/L) than after Ringer's acetate (88.1 (7.1) mg.min/L) (p = 0.019). After Intralipid, the AUC of the lipid-un-entrapped bupivacaine portion (97.0 (14.5) mg.min/L) was 8% lower than that of total bupivacaine (p <0.0001). To conclude, 4 mL/kg of Intralipid expedited cardiovascular recovery from bupivacaine cardiotoxicity mainly by increasing systemic vascular resistance. The increased myocardial mitochondrial respiration and bupivacaine entrapment after Intralipid did not improve cardiac function.Peer reviewe

    Expedition 302 summary

    No full text
    The first scientific drilling expedition to the central Arctic Ocean was completed in September 2004. Integrated Ocean Drilling Program Expedition 302, Arctic Coring Expedition (ACEX), recovered sediment cores to 428 meters below seafloor (mbsf) in water depths of ~1300 m, 250 km from the North Pole.Expedition 302's destination was the Lomonosov Ridge, hypothesized to be a sliver of continental crust that broke away from the Eurasian plate at ~56 Ma. As the ridge moved northward and subsided, marine sedimentation occurred and continues to the present, resulting in what was anticipated from seismic data to be a continuous paleoceanographic record. The elevation of the ridge above the surrounding abyssal plains (~3 km) ensured that sediments atop the ridge were free of turbidites. The primary scientific objective of Expedition 302 was to continuously recover this sediment record and to sample the underlying sedimentary bedrock by drilling and coring from a stationary drillship.The biggest challenge during Expedition 302 was maintaining the drillship's location while drilling and coring in 2–4 m thick sea ice that moved at speeds approaching 0.5 kt. Sea-ice cover over the Lomonosov Ridge moves with one of the two major Arctic sea-ice circulation systems, the Transpolar Drift, and responds locally to wind, tides, and currents. Until now, the high Arctic Ocean Basin, known as "mare incognitum" within the scientific community, had never before been deeply cored because of these challenging sea-ice conditions.Initial results reveal that biogenic carbonate is present only in the Holocene–Pleistocene interval. The upper 198 mbsf represents a relatively high sedimentation rate record of the past 18 m.y. and is composed of sediment with ice-rafted debris and dropstones, suggesting that ice-covered conditions extended at least this far back in time. Details of the ice type (e.g., iceberg versus sea ice), timing, and characteristics (e.g., perennial versus seasonal) await further study. A hiatus occurs at 193.13 mbsf, spanning a 25 m.y. interval from the early Miocene to the middle Eocene between ~18 Ma and 43 Ma. The sediment record during the middle Eocene is of dark, organic-rich biosiliceous composition. Isolated pebbles, interpreted as ice-rafted dropstones, are present down to 239 mbsf, well into this middle Eocene interval. Around the lower/middle Eocene boundary an abundance of Azolla spp. occurs, suggesting that a fresh and/or low-salinity surface water setting dominated the region during this time period. Although predrilling predictions based on geophysical data had placed the base of the sediment column at 50 Ma, drilling revealed that the uppermost Paleocene to lowermost Eocene boundary interval, well known as the Paleocene/Eocene Thermal Maximum (PETM), was recovered. During the PETM, the temperature of the Arctic Ocean surface waters exceeded 20°C.Drilling during Expedition 302 also penetrated into the underlying sedimentary bedrock, revealing a shallow-water depositional environment of Late Cretaceous age

    Methods

    No full text
    Information assembled in this chapter will help the reader understand the basis for the preliminary conclusions of the Expedition 302 Scientists and will also enable the interested investigator to select samples for further analyses. This information concerns offshore and onshore operations and analyses described in the "Sites M0001–M0004" chapter. Methods used by various investigators for shore-based analyses of Expedition 302 samples will be described in the individual contributions published in the Expedition Research Results and in various professional journals
    • …
    corecore