1,140 research outputs found

    Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Get PDF
    International audienceX-ray computed microtomography (μCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for μCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93– 98 μm) and mean throat size (~23–29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f0). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits

    Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption

    Get PDF
    Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) "frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5-10vol.% of the coarsest pyroclastic flow deposits, (2) dominantly "microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in porosity, tortuosity and permeability in compositionally identical tube and frothy pumices are the result of variable shear rates in different parts of the conduit. Differential shear rates may be the result of either: (1) pure shear, inducing a vertical progression from frothy to tube and implying a relatively thick fragmentation zone to produce both types of pumices at the same time or (2) localized simple shear, inducing strongly tubular vesicles along the wall and near-spherical bubbles in the centre of the conduit and not necessarily requiring a thick fragmentation zon

    Rhyolite generation prior to a Yellowstone supereruption: insights from the Island Park-Mount Jackson rhyolite series

    Get PDF
    The Yellowstone volcanic field is one of the largest and best-studied centres of rhyolitic volcanism on Earth, yet it still contains little-studied periods of activity. Such an example is the Island Park–Mount Jackson series, which erupted between the Mesa Falls and Lava Creek caldera-forming events as a series of rhyolitic domes and lavas. Here we present the first detailed characterisation of these lavas and use our findings to provide a framework for rhyolite generation in Yellowstone between 1·3 and 0·6 Ma, as well as to assess whether magmatic evolution hints at a forthcoming super-eruption. These porphyritic (15–40% crystals) lavas contain mostly sanidine and quartz with lesser amounts of plagioclase (consistent with equilibrium magmatic modelling via rhyolite-MELTS) and a complex assemblage of mafic minerals. Mineral compositions vary significantly between crystals in each unit, with larger ranges than expected from a single homogeneous population in equilibrium with its host melt. Oxygen isotopes in quartz and sanidine indicate slight depletions (δ18Omagma of 5·0–6·1‰), suggesting some contribution by localised remelting of hydrothermally altered material in the area of the previous Mesa Falls Tuff-related caldera collapse. The preservation of variable O isotopic compositions in quartz requires crystal entrainment less than a few thousand years prior to eruption. Late entrainment of rhyolitic material is supported by the occurrence of subtly older sanidines dated by single-grain 40Ar/39Ar geochronology. The eruption ages of the lavas show discrete clusters illustrating that extended quiescence (&gt;100 kyr) in magmatic activity may be a recurring feature in Yellowstone volcanism. Ubiquitous crystal aggregates, dominated by plagioclase, pyroxene and Fe–Ti oxides, are interpreted as cumulates co-erupted with their extracted liquid. Identical crystal aggregates are found in both normal-δ18O and low-δ18O rocks from Yellowstone, indicating that common petrogenetic processes characterise both volcanic suites, including the late-stage extraction of melt from an incrementally built upper crustal mush zone

    Novel microsatellite loci for Sebaea aurea (Gentianaceae) and cross-amplification in related species.

    Get PDF
    [Premise of the study] Microsatellite loci were developed in Sebaea aurea (Gentianaceae) to investigate the functional role of diplostigmaty (i.e., the presence of additional stigmas along the style).[Methods and Results] One hundred seventy-four and 180 microsatellite loci were isolated through 454 shotgun sequencing of genomic and microsatellite-enriched DNA libraries, respectively. Sixteen polymorphic microsatellite loci were characterized, and 12 of them were selected to genotype individuals from two populations. Microsatellite amplifi cation was conducted in two multiplex groups, each containing six microsatellite loci. Cross-species amplifi cation was tested in seven other species of Sebaea . The 12 novel microsatellite loci amplifi ed only in the two most closely related species to S. aurea (i.e., S. ambigua and S. minutifl ora ) and were also polymorphic in these two species.[Conclusions] These results demonstrate the usefulness of this set of newly developed microsatellite loci to investigate the mating system and population genetic structure in S. aurea and related species.We acknowledge grants to J.K. from the Swiss National Science Foundation (PA00P3_129140) and the Velux Stiftung (project no. 679) and to J.G.S.-M. from a postdoctoral research contract “Ramón y Cajal” from the Ministerio de Ciencia e Innovación (MICINN), Spain.Peer Reviewe

    Rapid magma generation or shared magmatic reservoir? Petrology and geochronology of the Rat Creek and Nelson Mountain Tuffs, CO, USA

    Get PDF
    This study was supported by the ETH Research Grant ETH-34 15-2 (JS).Large-volume silicic volcanism poses global hazards in the form of proximal pyroclastic density currents, distal ash fall and short-term climate perturbations, which altogether warrant the study of how silicic magma bodies evolve and assemble. The southern rocky mountain volcanic field (SRMVF) is home to some of the largest super-eruptions in the geological record, and has been studied to help address the debate over how quickly eruptible magma batches can be assembled–whether in decades to centuries, or more slowly over 100’s of kyr. The present study focuses on the San Luis caldera complex within the SRMVF, and discusses the paradigms of rapid magma generation vs. rapid magma assembly. The caldera complex consists of three overlapping calderas that overlie the sources of three large-volume mid-Cenozoic ignimbrites: first, the Rat Creek Tuff (RCT; zoned dacite-rhyolite, 150 km3), followed by the Cebolla Creek Tuff (mafic dacite, 250 km3) and finally, the Nelson Mountain Tuff (NMT; zoned dacite-rhyolite, 500 km3), which are all indistinguishable in age by 40Ar/39Ar dating. We argue for a shared magmatic history for the three units on the basis of (1) similar mineral trace element compositions in the first and last eruptions (plagioclase, sanidine, biotite, pyroxene, amphibole, titanite, and zircon), (2) overlapping zircon U-Pb ages in all three units, and (3) similar thermal rejuvenation signatures visible in biotite (low-Mn, high-Ba) and zircon (low-Hf, low-U) geochemistry within the RCT and NMT. It is postulated that the NMT was sourced from a pre-existing magma reservoir to the northeast, which is corroborated by the formation of the nearby Cochetopa Caldera during the eruption of the NMT. The inferred lateral magma transport has two important implications: (1) it demonstrates long-distance transport of highly viscosity magmas at volumes (100’s of km3) not previously recorded, and (2) the sourcing of magma from a nearby pre-existing magma reservoir greatly reduces the rate of magma generation necessary to explain the close coincidence of three overlapping, large-volume magma systems. Additionally, the concept of magmatic “flux” (km3 kyr−1) is discussed in this context, and it is argued that an area-normalized flux (km3 kyr–1 km−2) provides a more useful number for measuring magma production rates: it is expected that magmatic volumes will scale with footprint of the thermal anomaly, and not taking this into account may lead to errant volumetric flux (km3 kyr−1) estimates. Meanwhile, area-normalized flux estimates in a given area are similar between units, consistent with evolution in a relatively constant thermal regime. Such estimates also demonstrate similar fluxes for ∼cogenetic volcanic and plutonic units.Publisher PDFPeer reviewe

    Chemical elements recorded by Quercus mongolica Fisch. ex Ledeb. Tree rings reveal trends of pollution history in Harbin, China

    Full text link
    Rapid industrialization has led to a dramatic increase in air pollution. In China, the factors driving the abundance and composition of smog, particularly fine particulate matter, remain poorly understood, and short-term air pollution data are available from few air quality monitoring networks. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), chemical elements (Mg, Al, Si, S, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Tl, Pb, Bi) were analyzed in Quercus mongolica Fisch. ex Ledeb. tree rings from Harbin, China, in latewood at 5-year resolution over the period 1965–2020. The temporal trend of some elements was influenced by physiological factors, by environmental factors such as pollution, or influenced by both. Mg, K, Zn, Cu, Ni, Pb, As, Sr and Tl showed changes in pollution levels over time. The signal of K, Zn, Ni, Cu and Pb in trees from Harbin statistically did not differ from those at the control site after the 2000s. Our analysis confirmed the success of the undertaken emission reduction measures, which lead to an improvement in China’s urban air quality after 2010. However, As increased from 2000 to 2020 in Harbin which is consistent with rising As concentrations in China. Our study proved that dendrochemistry is a reliable tool to monitor the long-term history of pollution and to contribute to extending instrumental records of pollution back in time

    Monitoring air pollution close to a cement plant and in a multi-source industrial area through tree-ring analysis

    Get PDF
    Thirty-two trace elements were examined in the tree rings of downy oak to evaluate the pollution levels close to a cement plant isolated in a rural context and an industrial area where multiple sources of air pollution are or were present. Tree cores were collected from trees growing 1 km from both the cement plant and the industrial area that are located 8 km from each other. The analysis of the trace elements was performed on annual tree rings from 1990 to 2016 using laser ablation inductively coupled plasma mass spectrometry. Trace elements Cs, Mg, Mn, S and Zn reflected the emission history of the cement plant. Their values have increased since early 2000s, when the cement plant started its activity. However, the lack of significant trends of pollutants in the tree rings from the industrial area and the possible effect of translocation and volatility of some elements left open questions. The very weak changes of the other trace elements in the period 1990–2016 suggest those elements do not mark any additional effect of the industrial activity on the background pollution. The results confirm that downy oak trees growing close to isolated industrial plants must be considered a pollution forest archive accessible through dendrochemistry

    Creatine synthesis and transport during rat embryogenesis: Spatiotemporal expression of AGAT, GAMT and CT1

    Get PDF
    BACKGROUND: Creatine (Cr) is synthesized by a two-step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and is taken up by cells through a specific Cr transporter, CT1. Recently, genetic defects of this pathway have been described, that lead to Cr deficiency, neurological symptoms in early infancy and severe neurodevelopmental delay. To investigate the involvement of Cr synthesis and uptake pathways during embryonic development, we determined the spatiotemporal expression of AGAT, GAMT and CT1 during the rat embryogenesis, at the mRNA and protein level. RESULTS: We show that AGAT and GAMT are expressed in hepatic primordium as soon as 12.5 days, then progressively acquire their adult pattern of expression, with high levels of AGAT in kidney and pancreas, and high levels of GAMT in liver and pancreas. AGAT and CT1 are prominent in CNS, skeletal muscles and intestine, where they appear earlier than GAMT. High levels of CT1 are found in epithelia. CONCLUSION: Our results suggest that de novo synthesis of Cr by AGAT and GAMT, as well as cellular Cr uptake by CT1, are essential during embryonic development. This work provides new clues on how creatine can be provided to developing tissues, and suggests that Cr deficiencies might induce irreversible damages already in utero, particularly on the nervous system

    Broadband Setup for Magnetic-Field-Induced Domain Wall Motion in Cylindrical Nanowires

    Full text link
    In order to improve the precision of domain wall dynamics measurements, we develop a coplanar waveguide-based setup where the domain wall motion should be triggered by pulses of magnetic field. The latter are produced by the Oersted field of the waveguide as a current pulse travels toward its termination, where it is dissipated. Our objective is to eliminate a source of bias in domain wall speed estimation while optimizing the field amplitude. Here, we present implementations of this concept for magnetic force microscopy (MFM) and synchrotron-based investigation

    Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression

    Get PDF
    The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956–present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts–basaltic andesites are more radiogenic than Bezymianny andesites ([superscript 208]Pb/[superscript 204]Pb = 37.850–37.903, [superscript 207]Pb/[superscript 204]Pb = 15.468–15.480, and [superscript 206]Pb/[superscript 204]Pb = 18.249–18.278 at Bezymianny; [superscript 208]Pb/[superscript 204]Pb = 37.907–37.949, [superscript 207]Pb/[superscript 204]Pb = 15.478–15.487, and [superscript 206]Pb/[superscript 204]Pb = 18.289–18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.University of Washington. Department of Earth and Space Science
    corecore