16 research outputs found
Room temperature ionic liquides : structure and dynamics
Les Liquides Ioniques [LI] Ă tempĂ©rature ambiante forment une nouvelle classe de matĂ©riaux, prometteurs dans des applications diverses. Les avantages que les LI soulĂšvent par rapport aux autres liquides molĂ©culaires ou sels fondus rĂ©sident dans la facilitĂ© Ă changer leurs propriĂ©tĂ©s intrinsĂšques en jouant sur la nature chimique de la combinaison [cation-anion]. Cependant, on nâest pas encore prĂšs Ă prĂ©dire les propriĂ©tĂ©s dâun LI en connaissant uniquement sa composition chimique. Par consĂ©quent, nous avons fait des expĂ©riences de diffraction de rayons-x et de neutrons, complĂ©tĂ©es par une sĂ©rie de simulations de dynamiques molĂ©culaires sur une famille de LI Ă bases de cations dâalkyl-methylimidazolium et dâanion Bromure. Ainsi, en changeant la longueur de la chaine alkyl, nous avons comparĂ© la structure et la dynamique de trois LI de chaines ethyl, butyl et hexyl. La comparaison des rĂ©sultats structuraux obtenus par la simulation avec ceux des rayons-x donnĂšrent complĂšte satisfaction. Des rĂ©sultats intĂ©ressants ont Ă©tĂ© obtenus, spĂ©cialement ceux issus de la comparaison de la structure et la dynamique du LI 1-ethyl-3-methylimidazolium Bromide en phase cristalline et liquide. Par ailleurs, lâhĂ©tĂ©rogĂ©nĂ©itĂ© en phase volumique a pu ĂȘtre quantifiĂ©e ce qui a permis de dĂ©terminer que la sĂ©grĂ©gation augmente avec la longueur de la chaine alkyl cationique.Room temperature ionic liquids constitute a class of materials with many promising applications in very diverse fields. Their potentiality stems from the fact that their properties are very different from those of typical molecular solvents and furthermore they can be tailored by modifying the combination of ions forming the liquid. However it is not yet possible to predict which species will produce a particular set of properties. Therefore we have done a systematic computer simulation study on a series of three room temperature ionic liquids based on the alkyl-methylimidazolium cation combined with the bromium anion. The length of the alkyl chain of the cation and the anions has been increased progressively, going from ethyl to butyl and hexyl, in order to explore the structural and dynamical changes brought about by such change. Simulation results are also compared satisfactorily to high-energy x-ray diffraction and quasi elastic neutron scattering data obtained by us. Our results show that the structure of liquid 1-ethyl-3methylimidazolium Bromide presents large similarities with the crystal one. This resemblance appears also when the local dynamics of the ethyl chain is investigated using neutron spectroscopy. Moreover we have quantified the heterogeneity found in the bulk state, finding that segregation is favored by the length of the cationâs alkyl chain
Liquides ioniques : structure et dynamique.
Room temperature ionic liquids constitute a class of materials with many promising applications in very diverse fields. Their potentiality stems from the fact that their properties are very different from those of typical molecular solvents and furthermore they can be tailored by modifying the combination of ions forming the liquid. However it is not yet possible to predict which species will produce a particular set of properties. Therefore we have done a systematic computer simulation study on a series of three room temperature ionic liquids based on the alkyl-methylimidazolium cation combined with the bromium anion. The length of the alkyl chain of the cation and the anions has been increased progressively, going from ethyl to butyl and hexyl, in order to explore the structural and dynamical changes brought about by such change. Simulation results are also compared satisfactorily to high-energy x-ray diffraction and quasi elastic neutron scattering data obtained by us. Our results show that the structure of liquid 1-ethyl-3methylimidazolium Bromide presents large similarities with the crystal one. This resemblance appears also when the local dynamics of the ethyl chain is investigated using neutron spectroscopy. Moreover we have quantified the heterogeneity found in the bulk state, finding that segregation is favored by the length of the cationâs alkyl chain.Les Liquides Ioniques [LI] Ă tempĂ©rature ambiante forment une nouvelle classe de matĂ©riaux, prometteurs dans des applications diverses. Les avantages que les LI soulĂšvent par rapport aux autres liquides molĂ©culaires ou sels fondus rĂ©sident dans la facilitĂ© Ă changer leurs propriĂ©tĂ©s intrinsĂšques en jouant sur la nature chimique de la combinaison [cation-anion]. Cependant, on nâest pas encore prĂšs Ă prĂ©dire les propriĂ©tĂ©s dâun LI en connaissant uniquement sa composition chimique. Par consĂ©quent, nous avons fait des expĂ©riences de diffraction de rayons-x et de neutrons, complĂ©tĂ©es par une sĂ©rie de simulations de dynamiques molĂ©culaires sur une famille de LI Ă bases de cations dâalkyl-methylimidazolium et dâanion Bromure. Ainsi, en changeant la longueur de la chaine alkyl, nous avons comparĂ© la structure et la dynamique de trois LI de chaines ethyl, butyl et hexyl. La comparaison des rĂ©sultats structuraux obtenus par la simulation avec ceux des rayons-x donnĂšrent complĂšte satisfaction. Des rĂ©sultats intĂ©ressants ont Ă©tĂ© obtenus, spĂ©cialement ceux issus de la comparaison de la structure et la dynamique du LI 1-ethyl-3-methylimidazolium Bromide en phase cristalline et liquide. Par ailleurs, lâhĂ©tĂ©rogĂ©nĂ©itĂ© en phase volumique a pu ĂȘtre quantifiĂ©e ce qui a permis de dĂ©terminer que la sĂ©grĂ©gation augmente avec la longueur de la chaine alkyl cationique
Room temperature ionic liquides : structure and dynamics
Les Liquides Ioniques [LI] Ă tempĂ©rature ambiante forment une nouvelle classe de matĂ©riaux, prometteurs dans des applications diverses. Les avantages que les LI soulĂšvent par rapport aux autres liquides molĂ©culaires ou sels fondus rĂ©sident dans la facilitĂ© Ă changer leurs propriĂ©tĂ©s intrinsĂšques en jouant sur la nature chimique de la combinaison [cation-anion]. Cependant, on nâest pas encore prĂšs Ă prĂ©dire les propriĂ©tĂ©s dâun LI en connaissant uniquement sa composition chimique. Par consĂ©quent, nous avons fait des expĂ©riences de diffraction de rayons-x et de neutrons, complĂ©tĂ©es par une sĂ©rie de simulations de dynamiques molĂ©culaires sur une famille de LI Ă bases de cations dâalkyl-methylimidazolium et dâanion Bromure. Ainsi, en changeant la longueur de la chaine alkyl, nous avons comparĂ© la structure et la dynamique de trois LI de chaines ethyl, butyl et hexyl. La comparaison des rĂ©sultats structuraux obtenus par la simulation avec ceux des rayons-x donnĂšrent complĂšte satisfaction. Des rĂ©sultats intĂ©ressants ont Ă©tĂ© obtenus, spĂ©cialement ceux issus de la comparaison de la structure et la dynamique du LI 1-ethyl-3-methylimidazolium Bromide en phase cristalline et liquide. Par ailleurs, lâhĂ©tĂ©rogĂ©nĂ©itĂ© en phase volumique a pu ĂȘtre quantifiĂ©e ce qui a permis de dĂ©terminer que la sĂ©grĂ©gation augmente avec la longueur de la chaine alkyl cationique.Room temperature ionic liquids constitute a class of materials with many promising applications in very diverse fields. Their potentiality stems from the fact that their properties are very different from those of typical molecular solvents and furthermore they can be tailored by modifying the combination of ions forming the liquid. However it is not yet possible to predict which species will produce a particular set of properties. Therefore we have done a systematic computer simulation study on a series of three room temperature ionic liquids based on the alkyl-methylimidazolium cation combined with the bromium anion. The length of the alkyl chain of the cation and the anions has been increased progressively, going from ethyl to butyl and hexyl, in order to explore the structural and dynamical changes brought about by such change. Simulation results are also compared satisfactorily to high-energy x-ray diffraction and quasi elastic neutron scattering data obtained by us. Our results show that the structure of liquid 1-ethyl-3methylimidazolium Bromide presents large similarities with the crystal one. This resemblance appears also when the local dynamics of the ethyl chain is investigated using neutron spectroscopy. Moreover we have quantified the heterogeneity found in the bulk state, finding that segregation is favored by the length of the cationâs alkyl chain
Translational and Reorientational Dynamics of an Imidazolium-Based Ionic Liquid
We present results of parallel quasielastic neutron scattering (QENS) experiments and molecular dynamics numerical simulations for the dynamics of a prototype ionic liquid, 1-ethyl-3-methyl-imidazolium bromide. Differences and similarities with those from the crystal phase are also discussed. Both experiment and simulation demonstrate that, in the length and time scales being probed here (fractions of a nm and a few ps), the dynamics are dominated by activated translational diffusion in the liquid phase and reorientations of the ethyl groups in both solid and liquid
Effects of coating spherical iron oxide nanoparticles
International audienceWe investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed â TEM, DLS, VSM, SAXS and EXAFS â show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate