7 research outputs found

    The forgotten role of food cultures

    Get PDF
    Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food

    Exposure to Low Zearalenone Doses and Changes in the Homeostasis and Concentrations of Endogenous Hormones in Selected Steroid-Sensitive Tissues in Pre-Pubertal Gilts

    No full text
    This study was undertaken to analyze whether prolonged exposure to low-dose zearalenone (ZEN) mycotoxicosis affects the concentrations of ZEN, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL) in selected reproductive system tissues (ovaries, uterine horn—ovarian and uterine sections, and the middle part of the cervix), the hypothalamus, and pituitary gland, or the concentrations of selected steroid hormones in pre-pubertal gilts. For 42 days, gilts were administered per os different ZEN doses (MABEL dose [5 µg/kg BW], the highest NOAEL dose [10 µg/kg BW], and the lowest LOAEL dose [15 µg/kg BW]). Tissue samples were collected on days seven, twenty-one, and forty-two of exposure to ZEN (exposure days D1, D2, and D3, respectively). Blood for the analyses of estradiol and progesterone concentrations was collected in vivo on six dates at seven-day intervals (on analytical dates D1–D6). The analyses revealed that both ZEN and its metabolites were accumulated in the examined tissues. On successive analytical dates, the rate of mycotoxin accumulation in the studied tissues decreased gradually by 50% and proportionally to the administered ZEN dose. A hierarchical visualization revealed that values of the carry-over factor (CF) were highest on exposure day D2. In most groups and on most exposure days, the highest CF values were found in the middle part of the cervix, followed by the ovaries, both sections of the uterine horn, and the hypothalamus. These results suggest that ZEN, α-ZEL, and β-ZEL were deposited in all analyzed tissues despite exposure to very low ZEN doses. The presence of these undesirable compounds in the examined tissues can inhibit the somatic development of the reproductive system and compromise neuroendocrine coordination of reproductive competence in pre-pubertal gilts

    Occurrence of Zearalenone and Its Metabolites in the Blood of High-Yielding Dairy Cows at Selected Collection Sites in Various Disease States

    No full text
    Zearalenone (ZEN) and its metabolites, alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL), are ubiquitous in plant materials used as feed components in dairy cattle diets. The aim of this study was to confirm the occurrence of ZEN and its selected metabolites in blood samples collected from different sites in the hepatic portal system (posthepatic–external jugular vein EJV; prehepatic–abdominal subcutaneous vein ASV and median caudal vein MCV) of dairy cows diagnosed with mastitis, ovarian cysts and pyometra. The presence of mycotoxins in the blood plasma was determined with the use of combined separation methods involving immunoaffinity columns, a liquid chromatography system and a mass spectrometry system. The parent compound was detected in all samples collected from diseased cows, whereas α-ZEL and β-ZEL were not identified in any samples, or their concentrations were below the limit of detection (LOD). Zearalenone levels were highest in cows with pyometra, where the percentage share of average ZEN concentrations reached 44%. Blood sampling sites were arranged in the following ascending order based on ZEN concentrations: EJV (10.53 pg/mL, 44.07% of the samples collected from this site), ASV (14.20 pg/mL, 49.59% of the samples) and MCV (26.67 pg/mL, 67.35% of the samples). The results of the study indicate that blood samples for toxicological analyses should be collected from the MCV (prehepatic vessel) of clinically healthy cows and/or cows with subclinical ZEN mycotoxicosis. This sampling site increases the probability of correct diagnosis of subclinical ZEN mycotoxicosis

    Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts

    No full text
    The carry-over of zearalenone (ZEN) to the myocardium and its effects on coronary vascular reactivity in vivo have not been addressed in the literature to date. Therefore, the objective of this study was to verify the hypothesis that low ZEN doses (MABEL, NOAEL and LOAEL) administered per os to prepubertal gilts for 21 days affect the accumulation of ZEN, α-ZEL and β-ZEL in the myocardium and the reactivity of the porcine coronary arteries to vasoconstrictors: acetylcholine, potassium chloride and vasodilator sodium nitroprusside. The contractile response to acetylcholine in the presence of a cyclooxygenase (COX) inhibitor, indomethacin and / or an endothelial nitric oxide synthase (e-NOS) inhibitor, L-NAME was also studied. The results of this study indicate that the carry-over of ZEN and its metabolites to the myocardium is a highly individualized process that occurs even at very low mycotoxin concentrations. The concentrations of the accumulated ZEN metabolites are inversely proportional to each other due to biotransformation processes. The levels of vasoconstrictors, acetylcholine and potassium chloride, were examined in the left anterior descending branch of the porcine coronary artery after oral administration of ZEN. The LOAEL dose clearly decreased vasoconstriction in response to both potassium chloride and acetylcholine (P < 0.05 for all values) and increased vasodilation in the presence of sodium nitroprusside (P = 0.021). The NOAEL dose significantly increased vasoconstriction caused by acetylcholine (P < 0.04), whereas the MABEL dose did not cause significant changes in the vascular response. Unlike higher doses of ZEN, 5 μg/kg had no negative influence on the vascular system

    Correlations between Low Doses of Zearalenone, Its Carryover Factor and Estrogen Receptor Expression in Different Segments of the Intestines in Pre-Pubertal Gilts—A Study Protocol

    No full text
    Plant materials can be contaminated with Fusarium mycotoxins and their derivatives, whose toxic effects on humans and animals may remain subclinical. Zearalenone (ZEN), a low-molecular-weight compound, is produced by molds in crop plants as a secondary metabolite. The objective of this study will be to analyze the in vivo correlations between very low monotonic doses of ZEN (5, 10, and 15 μg ZEN/kg body weight—BW for 42 days) and the carryover of this mycotoxin and its selected metabolites from the intestinal contents to the intestinal walls, the mRNA expression of estrogen receptor alfa (ERα) and estrogen receptor beta (ERβ) genes, and the mRNA expression of genes modulating selected colon enzymes (CYP1A1 and GSTP1) in the intestinal mucosa of pre-pubertal gilts. An in vivo experiment will be performed on 60 clinically healthy animals with initial BW of 14.5 ± 2 kg. The gilts will be randomly divided into a control group (group C, n = 15) and three experimental groups (group ZEN5, group ZEN10, and group ZEN15; n = 15). Group ZEN5 will be administered per os 5 μg ZEN/kg BW (MABEL), group ZEN10—10 μg ZEN/kg BW (NOAEL), and group ZEN15—15 µg ZEN/kg BW (low LOAEL). In each group, five animals will be euthanized on analytical dates 1 (exposure day 7), 2 (exposure day 21), and 3 (exposure day 42). Samples for in vitro analyses will be collected from an intestinal segment resected from the following regions: the third (horizontal) part of the duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, and descending colon. The experimental material will be collected under special conditions, and it will be transported to specialist laboratories where samples will be obtained for further analyses
    corecore