290 research outputs found

    Monitoring the Formation of a CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite during Thermal Annealing Using X-Ray Scattering

    Get PDF
    Grazing incidence wide and small angle X-ray scattering (GIWAXS and GISAXS) measurements have been used to study the crystallization kinetics of the organolead halide perovskite CH3NH3PbI3-xClx during thermal annealing. In situ GIWAXS measurements recorded during annealing are used to characterize and quantify the transition from a crystalline precursor to the perovskite structure. In situ GISAXS measurements indicate an evolution of crystallite sizes during annealing, with the number of crystallites having sizes between 30 and 400 nm increasing through the annealing process. Using ex situ scanning electron microscopy, this evolution in length scales is confirmed and a concurrent increase in film surface coverage is observed, a parameter crucial for efficient solar cell performance. A series of photovoltaic devices are then fabricated in which perovskite films have been annealed for different times, and variations in device performance are explained on the basis of X-ray scattering measurements

    Using ion beams to tune the nanostructure and optical response of co-deposited Ag : BBBN thin films

    Get PDF
    The present study is devoted to co-deposited Ag : BN nanocermet thin films and is focused on the influence of ion irradiation conditions on their structural and linear optical properties. Ion irradiation was performed in situ during the growth of the nanocermets using a 50 eV assistance beam (nitrogen/argon or nitrogen-ion assistance) and ex situ on as-grown films using a 120 keV argon-ion beam (post-irradiation). Grazing incidence small-angle x-ray scattering measurements show that (i) as-grown N-assisted films contain prolate spheroidal clusters (height-to-diameter ratio H/D ≈ 1.8), (ii) N/Ar-ion assistance leads to the formation of more elongated clusters (H/D ≈ 2.1) and (iii) post-irradiation leads to a decrease of H/D to a value close to 1. These results are discussed on the basis of atomic diffusion processes involved during the growth of the nanocermets and during the post-irradiation. The optical transmittance spectra of these films measured at normal incidence display one absorption band, due to the excitation of the (1,1) plasmon mode of the clusters. In the case of the as-grown films, an additional band appears at oblique incidence for P-polarized light, as a consequence of the excitation of the (1,0) plasmon mode of the clusters. Our results show that the spectral position of the absorption bands (which can be tuned in the 400-600 nm range) depends on the H/D ratio of the clusters, in good agreement with calculations of optical transmittance considering the nanocomposite layer as a uniaxial anisotropic medium whose dielectric tensor is described by an anisotropic Maxwell-Garnett model. © 2007 IOP Publishing Ltd.The authors would like to thank CNRS-CSIC and Picasso programmes for financial support which permitted the collaboration between the Instituto de Ciencia de Materiales de Sevilla (Spain) and the Laboratoire de Metallurgie Physique ´ de Poitiers (France). The authors also thank J P Simon and the D2AM staff at the ESRF for their support during the GISAXS measurements.Peer Reviewe

    Quantitative optical determination of the shape of Cu nanocrystals in a composite film

    Get PDF
    5 pages, 4 figures, 1 table.We demonstrate that optical extinction spectroscopy can be used to determine the effective shape of Cu nanocrystals (NCs) embedded in a transparent amorphous Al2O3 host both produced by pulsed laser deposition. The axial ratio of the NCs was extracted from the positions of the surface plasmon modes of the optical extinction spectra of the nanocomposite film. Comparison to the results obtained by grazing incidence small angle x-ray scattering shows excellent agreement. Thus, optical spectroscopy can be used as a simple, easily accessible, and versatile tool for the characterization of the NCs that form nanocomposite films.This work was supported by the European Union (BRITE Project No. 98-0616).Peer reviewe

    Self-organization and optical response of silver nanoparticles dispersed in a dielectric matrix

    Get PDF
    Abstract. Double ion-beam sputtering has been used to fabricate nanocermet multilayers consisting of silver nanoparticles sandwiched between Si 3 N 4 dielectric layers. The organization of the nanoparticles has been studied in detail by quantitative analysis of transmission electronic microscopy and atomic force microscopy images. Our results show that the nanoparticles deposited on a plane surface present an isotropic macroscopic in-plane organization while their vertical arrangement displays a topology-induced self-organization. The use of faceted alumina substrates with periodic hill-and-valley structures results in the formation of linear chains of silver particles along the valleys. In that case, transmission optical measurements reveal in-plane anisotropy

    Mycolactone as Analgesic: Subcutaneous Bioavailability Parameters

    Get PDF
    is the bacillus responsible for Buruli ulcer, an infectious disease and the third most important mycobacterial disease worldwide, after tuberculosis and leprosy. infection is a type of panniculitis beginning mostly with a nodule or an oedema, which can progress to large ulcerative lesions. The lesions are caused by mycolactone, the polyketide toxin of . Mycolactone plays a central role for host colonization as it has immunomodulatory and analgesic effects. On one hand, mycolactone induces analgesia by targeting type-2 angiotensin II receptors (ATR), causing cellular hyperpolarization and neuron desensitization. Indeed, a single subcutaneous injection of mycolactone into the mouse footpad induces a long-lasting hypoesthesia up to 48 h. It was suggested that the long-lasting hypoesthesia may result from the persistence of a significant amount of mycolactone locally following its injection, which could be probably due to its slow elimination from tissues. To verify this hypothesis, we investigated the correlation between hypoesthesia and mycolactone bioavailability directly at the tissue level. Various quantities of mycolactone were then injected in mouse tissue and hypoesthesia was recorded with nociception assays over a period of 48 h. The hypoesthesia was maximal 6 h after the injection of 4 μg mycolactone. The basal state was reached 48 h after injection, which demonstrated the absence of nerve damage. Surprisingly, mycolactone levels decreased strongly during the first hours with a reduction of 70 and 90% after 4 and 10 h, respectively. Also, mycolactone did not diffuse in neighboring skin tissue and only poorly into the bloodstream upon direct injection. Nevertheless, the remaining amount was sufficient to induce hypoesthesia during 24 h. Our results thus demonstrate that intact mycolactone is rapidly eliminated and that very small amounts of mycolactone are sufficient to induce hypoesthesia. Taken together, our study points out that mycolactone ought to be considered as a promising analgesic

    Structural and magnetic properties of CoPt mixed clusters

    Get PDF
    In this present work, we report a structural and magnetic study of mixed Co58Pt42 clusters. MgO, Nb and Si matrix can be used to embed clusters, avoiding any magnetic interactions between particles. Transmission Electron Microscopy (TEM) observations show that Co58Pt42 supported isolated clusters are about 2nm in diameter and crystallized in the A1 fcc chemically disordered phase. Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) reveal that buried clusters conserve these properties, interaction with matrix atoms being limited to their first atomic layers. Considering that 60% of particle atoms are located at surface, this interactions leads to a drastic change in magnetic properties which were investigated with conventional magnetometry and X-Ray Magnetic Circular Dichro\"{i}sm (XMCD). Magnetization and blocking temperature are weaker for clusters embedded in Nb than in MgO, and totally vanish in silicon as silicides are formed. Magnetic volume of clusters embedded in MgO is close to the crystallized volume determined by GIWAXS experiments. Cluster can be seen as a pure ferromagnetic CoPt crystallized core surrounded by a cluster-matrix mixed shell. The outer shell plays a predominant role in magnetic properties, especially for clusters embedded in niobium which have a blocking temperature 3 times smaller than clusters embedded in MgO

    Building solids inside nano-space: from confined amorphous through confined solvate to confined ‘metastable’ polymorph

    Get PDF
    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate – ROY (259.3 g mol1). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical – indomethacin (IMC, 357.8 g mol1), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids
    corecore