77 research outputs found

    The role of copper in disulfiram-induced toxicity and radiosensitisation of cancer cells.

    Get PDF
    Abstract Disulfiram has been used for several decades in the treatment of alcoholism. It now shows promise as an anti-cancer drug and radiosensitizer. Proposed mechanisms of action include the induction of oxidative stress and inhibition of proteasome activity. Our purpose was to determine the potential of disulfiram to enhance the anti-tumor efficacy of external beam -irradiation and 131I-metaiodobenzylguanidine (131I-MIBG), a radiopharmaceutical used for the therapy of neuroendocrine tumors. Methods: The role of copper in disulfiram-induced toxicity was investigated by clonogenic assay after treatment of human SK-N-BE(2c) neuroblastoma and UVW/NAT glioma cells. Synergistic interaction between disulfiram and radiotherapy was evaluated by combination index analysis. Tumor growth delay was determined in vitro using multicellular tumor spheroids and in vivo using human tumor xenografts in athymic mice. Results: Escalating disulfiram dosage caused a biphasic reduction in the surviving fraction of clonogens. Clonogenic cell kill after treatment with disulfiram concentrations less than 4 M was copper-dependent, whereas cytotoxicity at concentrations greater than 10 M was caused by oxidative stress. The cytotoxic effect of disulfiram was maximal when administered with equimolar copper. Likewise, disulfiram’s radiosensitization of tumor cells was copper-dependent. Furthermore, disulfiram treatment enhanced the toxicity of 131I-MIBG to spheroids and xenografts expressing the noradrenaline transporter. Conclusions: The results demonstrate that (i) the cytotoxicity of disulfiram was copper-dependent; (ii) molar excess of disulfiram relative to copper resulted in attenuation of disulfiram-mediated cytotoxicity; (iii) copper was required for the radiosensitizing activity of disulfiram and (iv) copper-complexed disulfiram enhanced the efficacy not only of external beam radiation but also of targeted radionuclide therapy in the form of 131I-MIBG. Therefore disulfiram may have anti-cancer potential in combination with radiotherapy

    Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution

    Get PDF
    Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting

    Inhibition of fatty acid synthase sensitizes prostate cancer cells to radiotherapy

    Get PDF
    Many common human cancers, including colon, prostate and breast cancer, express high levels of fatty acid synthase compared to normal human tissues. This elevated expression is associated with protection against apoptosis, increased metastasis and poor prognosis. Inhibitors of fatty acid synthase, such as the cerulenin synthetic analog C75, decrease prostate cancer cell proliferation, increase apoptosis and decrease tumor growth in experimental models. Although radiotherapy is widely used in the treatment of prostate cancer patients, the risk of damage to neighboring normal organs limits the radiation dose that can be delivered. In this study, we examined the potential of fatty acid synthase inhibition to sensitize prostate cancer cells to radiotherapy. The efficacy of C75 alone or in combination with X irradiation was examined in monolayers and in multicellular tumor spheroids. Treatment with C75 alone decreased clonogenic survival, an effect that was abrogated by the antioxidant. C75 treatment also delayed spheroid growth in a concentration-dependent manner. The radiosensitizing effect of C75 was indicated by combination index values between 0.65 and 0.71 and the reduced surviving fraction of clonogens, in response to 2 Gy X irradiation, from 0.51 to 0.30 and 0.11 in the presence of 25 and 35 μM C75, respectively. This increased sensitivity to radiation was reduced by the presence of the antioxidant. The C75 treatment also enhanced the spheroid growth delay induced by X irradiation in a supra-additive manner. The level of radiation-induced apoptosis in prostate cancer cells was increased further by C75, which induced cell cycle arrest in the G2/M phase, but only at a concentration greater than that required for radiosensitization. Radiation-induced G2/M blockade was not affected by C75 treatment. These results suggest the potential use of fatty acid synthase inhibition to enhance the efficacy of radiotherapy of prostate carcinoma and that C75-dependent cell cycle arrest is not responsible for its radiosensitizing effect

    Inhibition of Poly(ADP-Ribose) polymerase enhances the toxicity of 131I-Metaiodobenzylguanidine/Topotecan combination therapy to cells and xenografts that express the noradrenaline transporter

    Get PDF
    Targeted radiotherapy using [131I]meta-iodobenzylguanidine ([131I]MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining [131I]MIBG with the topoisomerase I (Topo-I) inhibitor topotecan induced long-term DNA damage and supra-additive toxicity to NAT-expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of PARP-1 inhibition, in vitro and in vivo, to further enhance [131I]MIBG/topotecan efficacy

    Synthesis and Evaluation of 11C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography

    Get PDF
    Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones

    Iodofiltic Acid I 123 (BMIPP) Fatty Acid Imaging Improves Initial Diagnosis in Emergency Department Patients With Suspected Acute Coronary Syndromes A Multicenter Trial

    Get PDF
    ObjectivesThe aim of this study was to assess the performance of β-methyl-p-[123I]-iodophenyl-pentadecanoic acid (BMIPP) single-photon emission computed tomography (SPECT) to detect acute coronary syndromes (ACS) in emergency department patients with chest pain.BackgroundEmergency department diagnosis of chest pain is problematic, often requiring prolonged observation and stress testing. BMIPP SPECT detects abnormalities in fatty acid metabolism resulting from myocardial ischemia, even many hours after symptom cessation.MethodsEmergency department patients with suspected ACS were enrolled at 50 centers. Patients received 5 mCi BMIPP within 30 h of symptom cessation. BMIPP SPECT images were interpreted semiquantitatively by 3 blinded readers. Initial clinical diagnosis was based on symptoms, initial electrocardiograms, and troponin, whereas the final diagnosis was based on all available data (including angiography and stress SPECT) but not BMIPP SPECT. Final diagnoses were adjudicated by a blinded committee as ACS, intermediate likelihood of ACS, or negative for ACS.ResultsA total of 507 patients were studied and efficacy was evaluated in 448 patients with sufficient data. The sensitivity of BMIPP by 3 blinded readers for a final diagnosis of ACS and intermediate likelihood of ACS was 71% (95% confidence interval [CI]: 64% to 79%), 74% (95% CI: 68% to 81%), and 69% (95% CI: 62% to 77%); the corresponding specificity of BMIPP was 67% (95% CI: 61% to 73%), 54% (95% CI: 48% to 60%), and 70% (95% CI: 64% to 76%). Compared with the initial diagnosis alone, BMIPP + initial diagnosis increased sensitivity from 43% to 81% (p < 0.001), negative predictive value from 62% to 83% (p < 0.001), and positive predictive value from 41% to 58% (p < 0.001), whereas specificity was unchanged (61% to 62%, p = NS).ConclusionsThe addition of BMIPP data to the initially available clinical information adds incremental value toward the early diagnosis of an ACS, potentially allowing determination of the presence or absence of ACS to be made earlier in the evaluation process. (Safety and Efficacy Iodofiltic Acid I 123 in the Treatment of Acute Coronary Syndrome [Zeus-ACS]; NCT00514501

    Potential applications of nanotechnology in thermochemical conversion of microalgal biomass

    Get PDF
    The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
    corecore