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Many common human cancers, including colon, prostate
and breast cancer, express high levels of fatty acid synthase
compared to normal human tissues. This elevated expression
is associated with protection against apoptosis, increased
metastasis and poor prognosis. Inhibitors of fatty acid
synthase, such as the cerulenin synthetic analog C75,
decrease prostate cancer cell proliferation, increase apoptosis
and decrease tumor growth in experimental models. Al-
though radiotherapy is widely used in the treatment of
prostate cancer patients, the risk of damage to neighboring
normal organs limits the radiation dose that can be delivered.
In this study, we examined the potential of fatty acid synthase
inhibition to sensitize prostate cancer cells to radiotherapy.
The efficacy of C75 alone or in combination with X
irradiation was examined in monolayers and in multicellular
tumor spheroids. Treatment with C75 alone decreased
clonogenic survival, an effect that was abrogated by the
antioxidant. C75 treatment also delayed spheroid growth in a
concentration-dependent manner. The radiosensitizing effect
of C75 was indicated by combination index values between
0.65 and 0.71 and the reduced surviving fraction of clonogens,
in response to 2 Gy X irradiation, from 0.51 to 0.30 and 0.11
in the presence of 25 and 35 lM C75, respectively. This
increased sensitivity to radiation was reduced by the presence
of the antioxidant. The C75 treatment also enhanced the
spheroid growth delay induced by X irradiation in a supra-
additive manner. The level of radiation-induced apoptosis in
prostate cancer cells was increased further by C75, which
induced cell cycle arrest in the G2/M phase, but only at a
concentration greater than that required for radiosensitiza-
tion. Radiation-induced G2/M blockade was not affected by
C75 treatment. These results suggest the potential use of fatty
acid synthase inhibition to enhance the efficacy of radiother-
apy of prostate carcinoma and that C75-dependent cell cycle
arrest is not responsible for its radiosensitizing effect. � 2015

by Radiation Research Society

INTRODUCTION

Prostate cancer is the most commonly diagnosed
malignancy in men and the second leading cause of
cancer-related deaths in men in industrialized countries.
Although radiation therapy is one of the most popular
treatment options for clinically localized prostate cancer,
resistance is common (1). Therefore, new therapeutic
options are urgently required. The use of certain drugs that
can enhance the sensitivity of prostate cancer cells to
radiotherapy is a favorable strategy whereby the properties
of cancer cells can be exploited for therapeutic gain.

Epidemiologic studies have suggested that systemic
metabolic disorders, including obesity, metabolic syndrome
and diabetes as well as hypercaloric and fat-rich diets, might
increase the risk of prostate cancer (2). Increased de novo
lipid synthesis is an early event in the development of
prostate cancer (2) and correlates with unfavorable
prognosis and poor survival. Furthermore, the expression
and activity of lipogenic enzymes is upregulated by
androgens, suggesting a role in androgen-sensitive prostate
cancer (3). These observations indicate not only that
malignancy is strongly associated with vigorous lipid
metabolism but also that therapeutic benefit may be gained
by targeting regulatory elements.

Fatty acid synthase (FASN) is the enzyme responsible
for endogenous synthesis of saturated long-chain fatty
acids from the precursors acetyl-CoA and malonyl-CoA.
It plays a crucial role in energy homeostasis by
converting excess dietary carbon intake into fatty acids
for storage. Because most normal human tissues, except
liver and adipose tissue, preferentially use circulating
dietary fatty acids, FASN is expressed at low levels in
these tissues. However, fatty acid synthesis occurs at very
high rates in tumor tissues and FASN expression is
elevated in many cancer cells, including both androgen-
sensitive and -insensitive prostate adenocarcinoma (4–6).
The increased synthesis of fatty acids in cancer cells is
required for incorporation into membrane phospholipids
and lipid signaling in continuously dividing cells.
Increased expression of FASN also appears to protect
cells against apoptosis (7) and is associated with
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proliferation and angiogenesis (8, 9), suggesting a role in
aggressive, metastatic cancer. Stimulated FASN expres-
sion may be caused by increased activities of the
phosphatidylinositol-3 kinase (PI3K) and MAP kinase
signaling pathways (10), which are associated with
prostate cancer progression (11). These signaling path-
ways can be activated by androgens and progesterone in
prostate and breast cancer, respectively (2).

Since noncancerous cells, with the exception of a liver
and adipose tissue, do not require FASN activity, FASN
inhibitors should be active preferentially in cancer cells
in which FASN is upregulated. Inhibition of FASN,
either pharmacologically or by siRNA, has previously
been demonstrated to decrease viability, proliferation and
clonogenic survival and increase apoptosis of cancer
cells, but not nonmalignant cells (7, 12–14). Moreover,
FASN inhibition reduced the growth rate of prostate
cancer in experimental animals (15). There are several
reports of the toxicity of the FASN inhibitor cerulenin to
cancer cell lines (6, 16–18). However, the promise of
cerulenin as a cancer therapeutic is limited by its
chemical instability and lack of systemic activity, leading
to the development of C75 (a-methylene-b-butyrolac-
tone), a synthetic analog that selectively inhibits FASN
(16). Both cerulenin and C75 induce apoptosis in
melanoma cells (17) and C75 has been shown to decrease
the size of prostate cancer xenografts that overexpress
FASN (7). Importantly, no adverse effect, with the
exception of weight loss, was observed after treatment of
experimental animals with C75 (6, 13, 19, 20). Weight
loss was reversible and may have been caused by C75-
induced decrease in lipid biosynthesis (21), increase in
fatty acid oxidation (22) or appetite suppression (23).
This suggests that FASN inhibitors have potential as
anti-cancer agents, particularly for the treatment of
prostate cancer, where overexpression of FASN is
associated with tumor aggressiveness and poor prognosis
(2).

It has been suggested that combination therapy of
FASN inhibitors with other anti-cancer agents may
enhance the chemosensitivity of breast and prostate
cancer cells (19, 24, 25). However, the therapeutic
application of FASN inhibition in combination with
radiation treatment has not been subjected to experimen-
tal evaluation. Therefore, we aimed to assess the ability
of C75 to sensitize prostate cancer cells to experimental
radiotherapy and to determine the role of cell cycle
redistribution in radiosensitization.

MATERIALS AND METHODS

Reagents

All cell culture media and supplements were purchased from Life
Technologies (Paisley, UK), unless stated otherwise. All other
chemicals, including C75, were from Sigma-Aldrich (Dorset, UK).
Stock solutions of C75 were prepared in dimethyl sulfoxide (DMSO).

The maximum DMSO concentration in culture media was 0.1% (v/v).
Control treatments contained DMSO alone in culture media.

Tissue Culture

Human prostate cancer cell lines, PC3 and LNCaP, were obtained
from American Type Culture Collection (ATCCt, Manassas, VA) and
were used in this study for less than 6 months after resuscitation. PC3
cells were maintained in F12K media supplemented with 10% (v/v)
fetal bovine serum (Autogen Bioclear, Wiltshire, UK), 2 mM L-
glutamine, 0.1 mM sodium pyruvate and 50 lg/ml gentamicin. LNCaP
cells were maintained in RPMI 1640 media supplemented with 10%
(v/v) fetal bovine serum (Hyclone, Fisher Scientific, UK), 1% (v/v)
HEPES, 1% (v/v) D-glucose, 1 mM sodium pyruvate, 4 mM L-
glutamine, 50 lg/ml gentamicin.

MTT Toxicity Assay

MTT reduction was performed according to the published method
of Mosmann (26). Cells were seeded in 96-well plates and incubated
for 2 days to allow exponential phase growth. Cells were then washed
twice with PBS and drug-containing media was added at the required
concentration. After 24 or 48 h incubation, MTT was added to a final
concentration of 0.5 mg/ml and cultures were incubated for 2 h. Cells
were then solubilized with DMSO before measuring absorbance at
570 nm. Cell growth was also measured, using MTT assay, every 24 h
up to 96 h.

Clonogenic Survival Assay

PC3 cells were seeded in 25 cm2 flasks at 105 cells/flask. When
cultures were in exponential growth phase, media was removed and
replaced with fresh drug-containing media. Cells were then incubated
for 24 h at 378C in 5% CO2. To determine optimal sequencing of
therapeutic agents, three different combination treatment schedules
were assessed: 1. radiation and C75 administered simultaneously; 2.
radiation administered 24 h before C75; and 3. radiation administered
24 h after C75. After treatment, cells were seeded for clonogenic
survival assay as previously described elsewhere (27, 28). Cells were
incubated at 378C in 5% CO2 for 10 days. Colonies were fixed in
methanol, stained with crystal violet solution and those colonies of at
least 50 cells were counted. To assess the role of reactive oxygen
species (ROS) in C75-induced cytotoxicity, cells were co-incubated
with the antioxidant N-acetyl-L-cysteine (NAC, 1 mM).

Cells were irradiated using an Xstrahl RS225 X-ray irradiator at a
dose rate of 1.6 Gy/min. The cytotoxic interaction of C75 and X
radiation in vitro was assessed according to the method of Chou and
Talalay (29), which is based on the median-effect principle. Briefly,
clonogenic assay was performed using a fixed dose ratio of drug to
radiation, based on the concentrations required to kill 50% of
clonogens (IC50) of each single agent, so that the proportional
contribution of each agent in the mixtures was the same at all
treatment intensities. The effectiveness of combinations was quanti-
fied by calculating a combination index (CI) at various levels of
cytotoxicity: CI , 1, CI¼ 1 and CI . 1 indicate synergism, additivity
and antagonism, respectively.

Multicellular Spheroid Growth Assay

Multicellular tumor spheroids consisting of LNCaP cells were
obtained using the liquid overlay technique (30). Spheroids were
initiated by inoculating cells into a plastic flask coated with 1% (w/
v) agar. After 3 days, aliquots of spheroids were transferred to
sterile plastic tubes and centrifuged at 12g for 3 min. Thereafter,
spheroids were irradiated or resuspended in serum-free culture
media containing C75. After treatment, the spheroids were washed
twice and those of approximately 100 lm in diameter were
transferred individually into agar-coated wells of 24-well plates, as
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previously described (31). Individual spheroid growth was
monitored twice weekly for three weeks using an inverted phase-
contrast microscope connected to an image acquisition system.
Two perpendicular diameters, dmax and dmin, were measured using
image analysis software (ImageJ Software, NIH, Bethesda, MD)
and the volume, V (lm3), was calculated using the formula: V ¼ p
3 dmax 3 dmin

2/6 (31). The area under the V/V0 versus time curve
(AUC) was calculated for individual spheroids using trapezoidal
approximation.

Wound-Healing Assay

The ‘‘scratch assay’’ was used to determine the proliferation and
migration of cells after exposure to C75. After serum starvation
overnight (0.5% FCS), confluent layers of LNCaP or PC3 cells in 24-
well plates were scratched using a sterile pipette (32). After injury,
monolayers were gently washed with PBS and incubated in the
absence or presence of C75. Quadruplicate wells were photographed
using 103 magnification every 24 h after induction of injury.
Remodeling was measured as diminishing distance across the induced
injury (5 measurements per image), normalized to the 0 h control,
expressed as a percentage of initial wound size.

Apoptosis Assay

The effect of C75, X radiation and combination treatments on PC3
and LNCaP prostate carcinoma cell lines on induction of apoptosis
was assessed using a FITC Annexin V Apoptosis Detection Kit (BD
Biosciences, Oxford, UK) according to the manufacturer’s instruc-
tions. Briefly, 1 3 106 cells were treated for 24 h, then cells were
washed and resuspended in Annexin V binding buffer containing
Annexin V-FITC and propidium iodide (PI) in the dark before
analysis by flow cytometry using a FACSVersee analyzer (BD
Biosciences, Oxford, UK). Data were analyzed using FlowJo
software. Cells were designated viable (Annexin V–, PI–), early
apoptotic (Annexin Vþ, PI–), damaged (Annexin V–, PIþ) and late
apoptotic (Annexin Vþ, PIþ).

Cell Cycle Analysis

After C75 treatment for 3, 6 and 24 h, LNCaP and PC3 cells were
trypsinized, then washed twice with PBS. Cells were fixed by
treatment with ice-cold 70% (v/v) ethanol; then washed twice with
PBS and resuspended in PBS containing propidium iodide (10 lg/ml)
and RNase A (200 lg/ml). Cells were stained for 30 min before flow
cytometric analysis.

Statistical Analysis

Data are shown as means 6 standard error of the mean (SEM),
with the number of independent repetitions provided in the legend
to each figure. Statistical significance was determined using
Student’s t test. A P value of ,0.05 was considered to be
statistically significant and P , 0.01 was highly significant. To test
for differences in spheroid growth among experimental therapy
groups, the Kruskal-Wallis test was used with post hoc testing by
the Mann-Whitney U test with Bonferroni correction. Analysis was
performed using SPSSt software (IBM Corp., Armonk, New
York).

RESULTS

C75 is Toxic to Prostate Cancer Cells

When administered as a single agent at doses greater
than 10 lM, C75 reduced the viability of both PC3 and
LNCaP cells in a concentration-dependent manner,

according to MTT assay (Fig. 1A and B). Similar
susceptibility of both cell lines to C75 treatment was
observed. Toxicity was further assessed by clonogenic
assay of PC3 cells (LNCaP cells did not form colonies)
and spheroid growth assay of LNCaP cells (PC3 cells did
not form spheroids). The clonogenic survival of PC3 cells
was reduced by treatment with C75 concentrations �25
lM (Fig. 1C). The IC50 value corresponding to 24 h
treatment was 35 lM. Treatment with C75 alone, in the
dose range 10–50 lM, also reduced the growth of LNCaP
spheroids (Fig. 1D) in a concentration-dependent manner.
According to the spheroid volume at the completion of the
experiment, the IC50 value was 50 lM. Spheroids were
sterilized by treatment with 100 lM C75.

C75 Reduced Cell Migration

The effect of C75 on growth and migration of LNCaP
cells is shown in Fig. 2. Concentrations of C75 �35 lM
reduced both cell proliferation and migration at all time
points throughout the 96 h measurement period. However,
although lower concentrations of C75 (5 and 25 lM) failed
to inhibit growth, these concentrations significantly reduced
the closure of scratches in a wound-healing model (Fig. 2B
and C), indicating restraint upon cell migration. Inhibition
of growth of PC3 cells was demonstrated at a range of
concentrations of C75 (Fig. 2D). For PC3 cells, complete
wound closure in untreated wells was observed at 24 h.
Therefore, the results of C75-induced reduction in migration
of PC3 cells are displayed as wound closure at 24 h (Fig.
2E). As was observed after treatment of LNCaP cells with
C75, the inhibition of migration of PC3 cells occurred at
lower concentrations than those required for growth
inhibition.

C75 Enhanced Radiation-Induced Clonogenic Kill

Administration of C75 (35 lM) combined with 2 Gy X
irradiation increased the clonogenic kill of PC3 cells
induced by either agent alone, regardless of administration
schedule (i.e., simultaneous, C75 treatment 24 h before
and 24 h after X irradiation). However, the greatest
enhancement was observed after simultaneous administra-
tion of treatments (Fig. 3A). Representative combination
index values for simultaneous treatment of PC3 cells with
C75 and X radiation are shown in Table 1. These indicated
that supra-additive clonogenic kill (manifest as CI , 1)
was observed at all toxicity levels. The decreased
clonogenic capacity of PC3 cells resulting from X
irradiation was enhanced by treatment with C75 at 25
and 35 lM (Fig. 3B). The IC50 values obtained after
exposure of PC3 cells to X radiation alone, or in the
presence of 25 and 35 lM C75 were 1.93 6 0.08, 1.34 6

0.11 and 1.17 6 0.10 Gy, respectively. The surviving
fractions after 2 Gy irradiation were 0.51 6 0.01, 0.30 6

0.02 and 0.11 6 0.02 for 0, 25 and 35 lM C75,
respectively. The calculated dose enhancement ratios at
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50% clonogenic kill (DER50) were 1.49 6 0.17 and 2.40
6 0.28 for 25 and 35 lM C75, respectively. These
observations indicate concentration-dependent radiosensi-
tization by C75.

C75 Enhanced the Spheroid Growth Delay Induced by
Radiation Exposure

The growth of multicellular spheroids composed of
LNCaP cells was delayed in a concentration-dependent
manner by exposure to radiation (Fig. 4A). The effect of
simultaneous X irradiation and C75 treatment at various
concentrations (25, 35 and 50 lM) is shown in Fig. 4B–D.
Compared with untreated controls, the rate of increase of
spheroid volume was reduced by treatment with C75 as a
single agent. Furthermore, the growth inhibitory effect of
ionizing radiation was enhanced by a combination of C75
treatment at all concentrations examined.

Growth delay, expressed as the time taken to increase
spheroid volume tenfold (s10) was increased by both C75
and X irradiation as single modalities. However, the growth
delay induced by simultaneous combination therapy was
significantly greater than the growth inhibitory potency of
either agent alone (Table 2). Similarly, AUC values were
significantly decreased in a supra-additive manner by

combination treatment (Table 2), reflecting enhanced delay

of spheroid growth.

Apoptosis Induction by Radiation Exposure was Enhanced
by C75 Treatment

The percentage of apoptotic (early and late) PC3 and

LNCaP cells 24 h after 2 Gy X irradiation, 50 lM C75

treatment or a combination of both, is shown in Fig. 5. In

both cell lines, apoptosis was increased by 2 Gy exposure or

C75 administered as single treatments. Simultaneous

exposure to both treatments resulted in an increase in

apoptosis to a frequency significantly greater than that

induced by either agent alone.

Effect of Antioxidant on Radiosensitizing Ability of C75

The kill of PC3 clonogens treated with C75 was

prevented by co-incubation with the antioxidant NAC

(Fig. 6), whereas the radiation-induced clonogenic kill

was not affected by NAC. The lethality of the combination

treatment (C75 þ X radiation) was reduced by the addition

of NAC. However, the surviving fraction after treatment

with radiation, C75 and NAC was significantly lower than

that of treatment with radiation alone (P , 0.05).

FIG. 1. Toxicity of C75 to prostate cancer cell lines. PC3 (panel A) and LNCaP (panel B) cells were exposed
to C75 for 24 and 48 h before cytotoxicity was assessed using MTT assay. Panel C: The ability of C75 to reduce
clonogenic survival of PC3 cells was assessed. Panel D: The growth of LNCaP spheroids after 24 h exposure to
C75 was determined and is expressed as area under the V/V0 versus time curve. Data are means 6 SEM, n¼ 3.
*P , 0.05 and **P , 0.01 compared to untreated controls.
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Effect of C75 and Ionizing Radiation on Cell Cycle

Progression

The effect of a range of concentrations of C75 and 2 Gy

irradiation on the cell cycle distribution of asynchronously

growing PC3 and LNCaP cells was determined after

treatment for 3, 6 and 24 h (Fig. 7). Neither C75 nor
radiation exposure alone had any effect on cell cycle
progression 3 h after the initiation of treatment (data not
shown). Cycle progression of neither cell line was
significantly affected by C75 treatment for 3 and 6 h.
Although C75 caused a significant increase in the G2/M

FIG. 2. Panel A: The proliferation of LNCaP cells exposed to C75 for up to 96 h was assessed using MTT
assay. Panel B: Representative images of wound-healing assay of LNCaP cells. Wound size was measured in
five locations for each photograph. Panel C: The migration of LNCaP cells using wound-healing assay to
measure the closure of a scratch in confluent layers of cells after incubation with C75. Panel D: The proliferation
of PC3 cells exposed to C75 for up to 96 h was assessed using MTT assay. Panel E: The migration of PC3 cells
was assessed using wound-healing assay and results show migration 24 h after incubation with C75. Data are
means 6 SEM, n ¼ 3. *P , 0.05 and **P , 0.01 compared to untreated controls at same time points.

FIG. 3. The effect of C75 on radiation-induced kill. Panel A: The effect of administration schedule of the
combination of C75 (35 lM) and X radiation on the kill of PC3 clonogens was tested using three administration
schedules: 1. radiation and drug administered simultaneously; 2. radiation administered 24 h before drug; and 3.
radiation administered 24 h after drug. *P , 0.05 compared to single agents, �P , 0.05 compared to
simultaneous administration. Panel B: Radiation kill curves of PC3 cells exposed to C75 (25 and 35 lM) and X
radiation at a range of doses, administered simultaneously. Data are means 6 SEM, n ¼ 3.
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population of PC3 cells after 24 h, this occurred only after

treatment with 50 lM C75 and not with lower concentra-

tions (Fig. 7A). In contrast, increased accumulation in G1

phase was observed after 24 h exposure of LNCaP cells to

C75 (Fig. 7A).

In both cell lines, radiation treatment alone (1–4 Gy)

caused a rise in the G2/M population 6 h after irradiation

(Fig. 7B). However, 24 h after irradiation of PC3 cells the

G2/M population returned to control levels for all radiation

doses except 4 Gy, where arrest of the G2/M phase

persisted. In the case of LNCaP cells, radiation doses ,4

Gy caused an increase in the G1 phase and a decrease in G2/

M phase 24 h after irradiation (Fig. 7B). When administered

concurrently with radiation, C75 did not affect the radiation-

induced increase in G2/M observed at 6 h (Fig. 7C and D).

Similarly, 24 h after administration, the combination

treatment did not significantly alter the effect on the cell

cycle of each agent alone (data not shown).

DISCUSSION

A characteristic of cancer cells is increased glucose

consumption and lactate production, even in the presence of

oxygen (aerobic glycolysis or the Warburg effect). Howev-

er, glycolytic metabolism is less prevalent in prostate cancer

than in the majority of other solid cancers (2). Furthermore,

increased de novo lipid synthesis and stimulation of the

activity of lipogenic enzymes is a feature of prostate cancer

(2, 33). This upregulation is controlled by androgens and,

crucially, persists or re-emerges with development of

TABLE 1
The Effect of Treatment of PC3 Cells with C75 and X

Radiation on Combination Indices

Effect level CI value

ED30 0.71 6 0.15
ED40 0.70 6 0.13
ED50 0.69 6 0.12
ED70 0.67 6 0.10
ED90 0.65 6 0.08

Notes. CI values are mean 6 SEM of 3 experiments. EDx ¼ dose
required to kill 3% of clonogens.

FIG. 4. The effect of radiation and C75, alone or in combination, on the growth of LNCaP spheroids.
Spheroids composed of LNCaP cells were exposed to X radiation (panel A) or combinations of X radiation and
C75 (panels B–D) and 24 h later were transferred to agar-coated plates. Each spheroid was then photographed
twice per week and change in spheroid volume (V/V0) was measured up to 21 days. Data are means 6 SEM, n¼
3.
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androgen-independent cancer (34), hence drugs inhibiting

the dysregulated lipogenesis observed in prostate cancer are

currently being assessed (33).

Changes in fatty acid metabolism in tumor cells can be

driven by dysregulated intracellular signaling in response to

growth factors (10). The resultant elevated expression and

activity of FASN, and increased biosynthesis of fatty acids,

are characteristic of several cancers, particularly those of

prostate and breast (35, 36), whereas low levels of FASN

are observed in most normal tissues. Increased levels of

endogenously synthesized fatty acids enable membrane

biosynthesis during proliferation and activate intracellular,

autocrine and paracrine signaling pathways associated with

growth and survival. Consequences of elevated FASN may

be survival advantage due to resistance to apoptosis, tumor
aggressiveness, increased metastasis and poor prognosis (7).
It is possible that these effects can be overcome by
pharmacological inhibitors of FASN. Therapeutic selectiv-
ity is expected due to the low activity of FASN in most
noncancerous cells.

The results of the current investigation indicate that two
prostate cancer cell lines (LNCaP and PC3), which express
high levels of FASN (17), succumbed to treatment with the
FASN inhibitor C75. This was manifest by reduced
proliferation and migration, decreased clonogenic capacity
and delayed growth of multicellular tumor spheroids in a
concentration-dependent manner. Previously, the efficacy of
C75, as a single agent, has been indicated in vitro (13, 15–
18, 37, 38) and in vivo (6, 13, 19, 20, 39). FASN activity in
both PC3 and LNCaP cells was previously shown to be
decreased by 30% with 30 lM C75 treatment (40).
Moreover, 30 lM C75 has been reported to decrease
proliferation in these cell lines (15, 18, 37). Protein levels of
FASN protein levels were, however, unaffected by C75
(37). Although FASN expression and activity in prostate
tumors are elevated by androgens, they are also increased
during the development of androgen-independent malignant
disease (6), indicating that FASN inhibition may be
clinically useful even during progression of hormone-
refractory prostate cancer. This notion is supported by the
cytotoxicity of C75 to both LNCaP and PC3 cells, which
are androgen-dependent and -independent, respectively.

Migita et al. (7) demonstrated that FASN is overex-
pressed in prostate intraepithelial neoplasia compared with
adjacent normal tissue, indicating that it plays a role in the
initial phases of prostate tumorigenesis, and in metastatic

TABLE 2
Comparison of the Effect of Single Agent Treatment

with Combination Treatment on the Growth of
LNCaP Spheroids

Treatment s10 (days) AUC

Control 5.1 6 0.3 8491 6 58
2 Gy X irradiaton 5.7 6 0.5 4523 6 243
25 lM C75 5.5 6 0.8 6599 6 246
2 Gy X irradiaton þ 25 lM C75 6.6 6 0.5 3224 6 838**

35 lM C75 6.4 6 0.3 5453 6 297
2 Gy X irradiaton þ 35 lM C75 8.4 6 0.6� 1869 6 511**��

50 lM C75 7.3 6 0.2 3854 6 140
2 Gy X irradiaton þ 50 lM C75 11.3 6 0.5**�� 637 6 81**��

Notes. Data are expressed as the time taken to increase spheroid
volume tenfold (s10) and the area under the volume-time curve (AUC).
Values are means 6 SEM of three separate experiments. *C75
compared with X radiation plus C75. �X radiation compared with X
radiation plus C75. */�P , 0.05, **/��P , 0.01.

FIG. 5. Induction of apoptosis by exposure to radiation and C75. PC3 (panel A) and LNCaP (panel B) cells
were 2 Gy X irradiated and treated with 50 lM C75 or a combination of both for 24 h, and apoptosis was
analyzed by co-staining with Annexin V-FITC and propidium iodide. Graphs show early (Annexin V-positive
and PI-negative) and late (Annexin V-positive and PI-positive) apoptotic cells. Data are means 6 SEM, n¼ 3.
*P , 0.05 compared to untreated controls; �P , 0.05 compared to radiation exposure alone and C75 alone.
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prostate cancer, where it is associated with aggressiveness.

It has been suggested that inhibition of FASN may prevent

or inhibit metastasis in colorectal cancer (41) and the FASN

inhibitor orlistat was shown to decrease angiogenesis and

metastases in experimental models (42, 43). We tested the

ability of C75 to inhibit migration of prostate cancer cells.

Using concentrations that elicited no anti-proliferative

effect, the ability of cells to repair a scratch injury was

significantly reduced, indicating that C75 impaired cellular

migration. C75-induced decrease in migration may be one

mechanism whereby this drug reduces the metastatic

capacity of prostate cancer cells. As metastasis is a hallmark

of advanced prostate cancer, this suggests that C75 may

reduce aggressiveness and the associated poor clinical

outcome.

In agreement with previous reports (17, 19, 38, 44), we

observed that C75 induced apoptosis in cancer cells. The

accumulation of the pro-apoptotic FASN substrate malonyl

Co-A is thought to be responsible for the cytotoxic effect of

C75 (19), whereas growth inhibition may be caused by

insufficiency of lipid products of FASN, such as phospho-

lipids required for incorporation into cellular membranes

FIG. 6. Clonogenic assay of PC3 cells performed in the absence
(black bars) and presence (white bars) of the antioxidant NAC (1 mM),
which was co-incubated with treated cells for 24 h prior to clonogenic
assay. Data are means 6 SEM, n ¼ 3. **P , 0.01 compared to
untreated controls; �P , 0.05 and ��P , 0.01 compared to no NAC.
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FIG. 7. Cell cycle analysis after treatment of cells with radiation and C75, alone or in combination. Propidium
iodide-stained cells were analyzed using flow cytometry to determine cell cycle distribution. Panel A: Cell cycle
distribution of PC3 and LNCaP cells treated with C75 for 24 h before fixing and staining. Panel B: PC3 and
LNCaP cells in G2/M phase of cell cycle are shown 6 and 24 h after exposure to X radiation. Cell cycle
distribution in PC3 (panel C) and LNCaP (panel D) cells 6 h after simultaneous treatment with radiation and
C75. Data are means 6 SEM, n¼ 3. *P , 0.05 and **P , 0.01 compared to untreated controls at the same time
points.
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during proliferation (44, 45). Inhibition of FASN by C75
treatment has also been reported to induce, in tumor cells
but not in normal cells, an endoplasmic reticulum stress
response, manifest as increased expression of endoplasmic

reticulum stress-regulated genes, leading to cell death (46).
Endoplasmic reticulum stress also triggers oxidative stress
through generation of ROS. The abrogation of C75-induced
clonogenic kill in the presence of antioxidant NAC in this
study indicated that elevated ROS levels may be partly

responsible for the cytotoxicity of C75. It has also been
recently reported that the apoptotic effect of C75 in liver
carcinoma cells is caused by increased ROS generation (47),
suggesting that the activation of apoptotic pathways by C75
may occur via ROS-induced oxidative stress in addition to

accumulation of malonyl Co-A.

FASN inhibitors have been shown to sensitize cancer
cells to other chemotherapeutic agents (18, 24, 25).
However, the potential of FASN inhibitors to radiosensitize
tumors has not been evaluated. Radiotherapy is an
important element in the clinical management of prostate

cancer and its efficacy is expected to be enhanced when
combined with radiosensitizing agents (48). We demon-
strated that the radiation-induced decrease in the surviving
fraction of PC3 clonogens was enhanced when C75 was
administered in combination with X irradiation. Although
all schedules of administration of combined therapeutic

modalities (simultaneous and 24 h apart) were more
effective than single agent treatments, the greatest enhance-
ment of clonogenic kill was observed when simultaneous
administration of ionizing radiation and C75 was applied.
Therefore, this schedule was utilized in subsequent

experiments.

It has been suggested that the FASN inhibitor cerulenin
did not increase the sensitivity of glioma cells to radiation
(14). However, in the previous study, the MTT assay was
used to measure cell viability. This procedure does not
allow one to distinguish between clonogens and cells that

have sustained sufficient injury to restrict their ability to
undergo cell division. In contrast, in the current study,
clonogenic survival was assayed, enabling the determina-
tion of the toxicity of experimental therapy to cells with
unlimited capacity for proliferation. Clonogenic assay is

considered the gold standard for in vitro preclinical studies
of radiosensitizers (49, 50). Clonogenic assay data were
used to calculate combination indices and dose enhance-
ment ratios as recommended by Alcorn et al. (48).
Combination index values less than 1 indicate synergism;

in this study, values were �0.71 at all levels of toxicity
examined. Dose enhancement ratios observed were �1.49,
indicating sensitization. Furthermore, the spheroid growth
delay assay used in this study provided a more reliable
estimate of the response of prevascular metastases to
experimental therapy than two-dimensional cell culture

models (31). Using this methodology, C75 was observed to
sensitize prostate cancer cells to radiation. C75 also

increased the pro-apoptotic effect of X radiation in the
two prostate cancer cell lines.

The observed radiosensitizing activity may be partially
explained by the generation of ROS, since antioxidant
treatment was able to overcome the cytotoxicity of C75.
However, we observed that the C75-induced generation of
ROS was not entirely responsible for its radiosensitizing
effect, exemplified by partial abrogation of sensitization
induced by the antioxidant NAC. As NAC primarily
scavenges hydrogen peroxide, it does not preclude other
ROS contributing to the sensitization. This suggests the
involvement of alternative modes of action, possibly
involving disruption of the cell cycle, thereby influencing
sensitivity to radiation (51).

FASN inhibition by C75 in vitro does not result directly
in DNA damage (52). However, C75 has been shown to
alter cell cycle distribution of tumor cells. For example,
there are reports of C75-induced G1-phase arrest in LNCaP
prostate cancer cells (15) and Hep3B hepatocarcinoma cells
(53), S-phase arrest in MCF-7 breast cancer cells (36), G2/
M-phase arrest in A375 melanoma cells (17), HepG2 and
SMMC7721 hepatocarcinoma cells (53). We demonstrate
here that C75 was able to induce an increase in the G2/M
population of PC3 cells. This may be caused by
upregulation of p21 and p38 MAPK activation (17, 53).
However, G2/M arrest was observed only in PC3 cells
treated with the highest experimental concentration of C75
(50 lM). Lower concentrations of C75 (25 and 35 lM) had
no effect on the cell cycle distribution of PC3 cells, despite
their being sufficient to sensitize to radiation.

In LNCaP cells, G1 arrest was observed 24 h after C75
treatment, as also reported by Chen et al. (15), using similar
concentrations and incubation times. Radiation exposure
also caused an increase in the G1 phase of the cell cycle 24 h
after exposure of LNCaP cells, whereas no increase in G1

was observed in PC3 cells. The observed differences in cell
cycle redistribution among cell types in response to
radiation exposure and C75 may be due to their respective
p53 status. C75-induced accumulation of p53 in LNCaP
cells [characterized by wild-type p53 (54)] may be expected
to induce cell cycle arrest at G1, whereas PC3 cells
[harboring nonfunctional p53 (54)] arrest in G2/M, which
can be modulated by p38 MAPK (53). The inconsistent role
of p53 in C75-induced cell cycle arrest is further suggested
by reports of p53 accumulation in one study (52) but not in
another (53), despite both cell lines’ expressing wt p53. This
may be a result of cell-specific alternative cell cycle
regulatory pathways.

Cells in the G2/M phase of the cell cycle are more
sensitive to radiation than during other phases (51),
suggesting that cell cycle redistribution induced by C75
treatment could contribute to the enhanced efficacy of
radiation in PC3 cells. However, C75 did not induce G2/M
block in LNCaP cells, but nevertheless radiosensitized these
cells. In contrast, induction of S-phase arrest by cerulenin
may account for its lack of radiosensitizing effect (14) as
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cells in S phase are relatively radioresistant (51). C75-
induced G2/M block in PC3 cells indicated that the
scheduling of administration of the C75/radiation combina-
tion would influence efficacy. While it may be anticipated
that C75 would be more likely to radiosensitize when
administered 24 h before radiation, this was not observed. In
contrast, simultaneous administration had a greater effect
than pre-exposure to C75, indicating that cell cycle arrest is
not necessary for the sensitizing effect of C75.

Compared with clonogenic cell kill in monolayer cultures,
a higher concentration of C75 was required to attain 50%
inhibition of spheroid growth. The IC50 values were 35 and
50 lM C75 in clonogenic assay and spheroid growth assay,
respectively. Although cell line-dependent effects may play
a role in the observed differences, these are difficult to
confirm here due to the lack of colony-forming ability of
LNCaP cells and spheroid-forming ability of PC3 cells.
Similar concentration dependency was, however, observed
in MTT assay of the two cell lines. The relative resistance of
multicellular spheroids is commonly observed and is most
likely due to differences in drug penetration and the
microenvironment of the various layers within the spheroid
(55). However, we have demonstrated that the same
concentration of C75 (35 lM) was able to induce
radiosensitivity in both two- and three-dimensional models
and that G2/M cell cycle arrest was not observed at this
concentration, indicating that cell cycle alteration by C75 is
not the major mechanism of radiosensitization.

Alternative mediators of C75-induced radiosensitization
may include intracellular signaling pathways. These include
the PI3K/Akt signaling pathway, which may contribute to
radioresistance (56). Downregulation of this pathway by
C75 resulted in apoptosis (21). Alternatively, AMP-
activated protein kinase (AMPK) may be activated by
C75, resulting in inhibition of lipogenic pathways, including
FASN, and decreased proliferation of cancer cells (37).
Activators of this pathway may also lead to radiosensitiza-
tion (57).

As demonstrated here and in previous studies, the fatty
acid synthase inhibitor C75 has potential as an anti-cancer
drug. We have demonstrated that, in both androgen-
dependent and -independent prostate cancer cell lines,
C75 is able to act as a single agent to decrease cell
proliferation and migration as well as to induce apoptosis,
clonogenic kill and tumor growth delay. Moreover, C75 is
able to enhance the sensitivity of prostate cancer cells to
experimental radiotherapy and this is unlikely to be caused
by cell cycle redistribution. Although it has not been
assessed in this study, FASN concentration is considered to
be very low in noncancerous cells, and C75 has previously
been shown to have little or no toxic effect on noncancerous
tissue (12, 13). Therefore, C75 would not be expected to
enhance radiation-induced kill. Nonetheless it is recom-
mended that C75 treatment in combination with radiother-
apy be assessed in experimental animals before proceeding
to clinical evaluation. It may also be possible to increase the

specificity of radiotherapy by using radiopharmaceuticals
that selectively target upregulated cell surface molecules,
such as prostate-specific membrane antigen (PSMA), which
is an attractive target for prostate cancer imaging and
therapy (58). This strategy has already been utilized in
preclinical studies (59) and in a small-scale clinical trial
(60), with encouraging results, and warrants further
investigation in combination with radiosensitizers such as
C75.
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