Supplementary Materials

Synthesis and Evaluation of ${ }^{11}$ C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography

James M. Kelly*, Thomas M. Jeitner, Nicole Waterhouse, Wenchao Qu, Ethan J. Linstad, Banafshe Samani, Clarence Williams, Jr., Anastasia Nikolopoulou, Alejandro Amor-Coarasa, Stephen G. DiMagno, John W. Babich

* Corresponding author:

James M. Kelly, Ph.D.
Department of Radiology
Weill Cornell Medicine
Belfer Research Building
Room 1604
413 E 69 ${ }^{\text {th }}$ St
New York, NY 10021
jak2046@med.cornell.edu

Table of Contents

1. Synthesis of Precursor Compounds and Non-Radioactive Standards.. 2
2. UV and Radiochromatograms of Purified Products.. 9
3. Determination of FASN Expression in LNCaP and PC3 Cells... 12
4. Growth Inhibition Assay... 13
5. Comparison of In vitro Uptake in Aggregated versus Sub-Confluent LNCaP Cells..................................... 14
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds... 15

1. Synthesis of Precursor Compounds and Non-Radioactive Standards

General methods: All materials were obtained from commercial sources and used as received unless otherwise noted. Acetonitrile and d_{3}-acetonitrile (Cambridge Isotope Laboratories) were stirred over $\mathrm{P}_{2} \mathrm{O}_{5}$ (12 h), distilled into flame-dried storage tubes, and transferred into an inert atmosphere glove box. All glassware and NMR tubes were oven dried $\left(140^{\circ} \mathrm{C}\right)$ for 24 h before they were transferred into the glove box for use. Glove box manipulations were performed under nitrogen in an MBraun Labmaster 130, equipped with a recirculating purifier, which removed oxygen and water. All NMR experiments reported were performed using a Bruker Avance $300 \mathrm{MHz}, 400 \mathrm{MHz}, 500 \mathrm{MHz}, 600 \mathrm{MHz}$, or 700 MHz NMR spectrometers in the NMR laboratory at the University of Nebraska, the University of Illinois at Chicago, or Weill Cornell Medicine, and calibrated using residual protonated solvent. Yields from NMR scale reactions were determined by using the residual solvent peak as an internal standard. All J coupling values are given in Hz . Masses were determined by high resolution LC-MS or HR-MS using electrospray ionization (ESI). LC-MS mass determinations were performed on a Waters ACQUITY UPLC ${ }^{\circledR}$ coupled to a Waters ZSpray ${ }^{\top M}$ ionizer and a Waters SQ Detector 2. The column used for the chromatography component was a Phenomenex Kinetex $\mathrm{C} 18,50 \times 2.1 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$ and the mobile phase was a gradient of $5-95 \% \mathrm{MeCN}+$ 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA over 5 min . HR-MS mass determinations were performed on a Shimadzu LCMS IT-TOF ${ }^{\text {TM }}$. The chromatography unit was bypassed for mass measurements. The optical rotation was determined using a JASCO P-1020 polarimeter. The samples were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to a concentration of $0.3 \% \mathrm{w} / \mathrm{v}$ and analyses were performed at 589 nm and $20^{\circ} \mathrm{C}$. Optical rotations are reported as the mean of 10 replicates \pm standard deviation.

Synthesis of 4:

(1)

(4)

Scheme S1. Synthesis of 4 from GSK2194069. a. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3}$ I, DMF.

(S)-4-(4-(Benzofuran-6-yl)phenyl)-5-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)methyl)-2-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (4): To a solution of $3 \mathrm{mg}(7 \mu \mathrm{~mol})$ GSK2194069 in 0.5 mL DMF was added $6.4 \mathrm{mg}(46 \mu \mathrm{~mol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ and $10 \mu \mathrm{~L}(160 \mu \mathrm{~mol})$ methyl iodide. The reaction was stirred at room temperature for 24 h . The reaction was quenched with $2 \mathrm{~mL} 58 \% \mathrm{v} / \mathrm{v} 0.3 \mathrm{M} \mathrm{NH} 4 \mathrm{COOH} / \mathrm{MeCN}$, and the reaction was
purified in two fractions by semi-prep HPLC using a Phenomenex Luna C18(2) column, $250 \times 10 \mathrm{~mm}$ and monitoring UV absorption at 254 nm . The mobile phase was $58 \% \mathrm{v} / \mathrm{v} 0.3 \mathrm{M} \mathrm{NH} 4 \mathrm{COOH} / \mathrm{MeCN}$, and the flow rate was $5 \mathrm{~mL} / \mathrm{min}$. Under these conditions, the product eluted with a retention time of 11.2 min . The fractions containing the product was collected, combined, and diluted with $200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The diluted sample was passed through a pre-conditioned Sep-Pak C18 Plus Light cartridge (Waters). The cartridge was washed with $20 \mathrm{mLH}_{2} \mathrm{O}$ and eluted with 1 mL EtOH and 1 mL MeCN . The organic solvent was removed by heating to $75{ }^{\circ} \mathrm{C}$ under a stream of N_{2} to give 4 as a white powder ($2.8 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 7.83(\mathrm{~d}, J=1.5,1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.71(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.55(\mathrm{dd}$, $J=8.5,2.0,1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0,2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.0,0.5,1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.18$ $(\mathrm{m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.42(\mathrm{br} \mathrm{m}, 2.5 \mathrm{H}), 2.26-2.15(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 0.5 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 0.5 \mathrm{H})$,
 $153.5,145.9,142.8,137.2,135.1,131.5,128.9,128.8,128.1,127.4,127.3,123.9,119.9,111.8,106.8$, $51.8,45.3,42.8,32.5,29.7,22.8,12.2,7.6,7.5$. LCMS calc. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 443.20$. Found: 443.24 . $[\alpha]^{20}{ }_{D}=-8.04 \pm 0.59^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of 5 and 6:

Scheme S2. Synthesis of non-radioactive standards 5 and 6 and their precursors 2 and 3. a. EDC•HCl, DMAP, EtOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; b. $\mathrm{HCl} /$ dioxane; c. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{COCl}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; d. $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH; e. 2-fluoro-4iodoaniline, NEt_{3}, triphosgene, THF; f. $\mathrm{ArB}(\mathrm{OH})_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}, \mathrm{PdCl}_{2}(\mathrm{dppf})$, n - BuLi , THF; .Mel, $K_{2} \mathrm{CO}_{3}$, DMF.

tert-Butyl (S)-3-(2-ethoxy-2-oxoethyl)pyrrolidine-1-carboxylate (8): (S)-2-(1-(tert-Butoxycarbonyl) pyrrolidin-3-yl)acetic acid (7) ($8 \mathrm{~g}, 35 \mathrm{mmol}$) was dissolved in dichloromethane (70 mL). Then EDC•HCl (7.4 $\mathrm{g}, 38.6 \mathrm{mmol})$, DMAP ($0.4 \mathrm{~g}, 3.3 \mathrm{mmol}$), and $\mathrm{EtOH}(4.5 \mathrm{~mL}, 77 \mathrm{mmol})$ were added successively. The reaction was stirred for 16 h at room temperature. Then it was diluted with dichloromethane (70 mL), washed with
$1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and saturated aqueous sodium carbonate (10 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give 8 as a pale yellow oil ($9 \mathrm{~g}, 99 \%$), which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 4.14(\mathrm{br} \mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H})$, 3.49$3.39(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.55($ sept J = 7.4, 1H), 2.42-2.31(m,2H), $2.06(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H})$

Ethyl (S)-2-(pyrrolidin-3-yl)acetate hydrochloride (9): In a round bottom flask, pyrrolidine 8 (9 g, 35 mmol) was dissolved in 4 M HCl in dioxane ($46 \mathrm{~mL}, 184 \mathrm{mmol}$), with evolution of gas, and stirred for 5 h at room temperature. The solvent was removed under high vacuum to give 9 as an off white solid (6.7 g , $99 \%)$ which was used without further purification. $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 9.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.13$ $(q, J=7.1,2 H), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{sept}, \mathrm{J}=$ $7.7,1 \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}=7.2,2 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H})$.

Ethyl (S)-2-(1-(cyclopropanecarbonyl)pyrrolidin-3-yl)acetate (10): Pyrrolidine 9 ($6.5 \mathrm{~g}, 33.6 \mathrm{mmol}$) was dissolved in dichloromethane (65 mL) under nitrogen with stirring. DIPEA ($11 \mathrm{~mL}, 66 \mathrm{mmol}$) was added slowly and the solution cooled in an ice bath. Cyclopropylcarbonyl chloride ($3.7 \mathrm{~mL}, 40.1 \mathrm{mmol}$) was added slowly and the reaction allowed to warm to room temperature with stirring for 2 h . Then the reaction was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, the organic layer separated, and the aqueous phase extracted with DCM (10 mL $x 3$). The organic layers were combined and washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over sodium sulfate and concentrated under reduced pressure. The resulting oil was placed under high vacuum for 1 d to yield 10 as an amber oil ($7.46 \mathrm{~g}, 98 \%$), which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta 4.15(\mathrm{q}, \mathrm{J}=7.1,1 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.1,1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 0.5 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.57(\mathrm{~m}$, $1 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 0.5 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 0.5 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 0.5 \mathrm{H}), 2.68(\mathrm{sept}, \mathrm{J}=7.6,0.5 \mathrm{H}), 2.58(\mathrm{sept}, \mathrm{J}=$ $7.6,0.5 \mathrm{H}), 2.51-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 0.5 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 0.5 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 0.5 \mathrm{H}), 1.62-1.54(\mathrm{~m}$, $1.5 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=6.8,1.5 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=6.8,1.5 \mathrm{H}), 1.02-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.69(\mathrm{~m}, 2 \mathrm{H})$.

(S)-2-(1-(Cyclopropanecarbonyl)pyrrolidin-3-yl)acetohydrazide (11): Ester 10 ($6.25 \mathrm{~g}, 27.7 \mathrm{mmol}$) and hydrazine hydrate ($36 \mathrm{~mL}, 550 \mathrm{mmol}$) were dissolved in $\mathrm{EtOH}(60 \mathrm{~mL})$ and refluxed for 16 h . The solvent was removed, $\mathrm{H}_{2} \mathrm{O}$ azeotropically removed with isopropanol, and the resulting oil placed under high vacuum for 3 d to give 11 as a sticky, light amber oil ($5.5 \mathrm{~g}, 94 \%$). The compound was stored in the dark until further use. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$: $\delta 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94-3.85(\mathrm{br} \mathrm{m}, 2.5 \mathrm{H}), 3.78-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 0.5 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 0.5 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 0.5 \mathrm{H}), 2.74(\mathrm{sept}, \mathrm{J}=7.3$, 0.5 H), $2.64(\mathrm{sept}, \mathrm{J}=7.5,0.5 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 2 \mathrm{H}) 2.12-2.05(\mathrm{~m}, 0.5 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 0.5 \mathrm{H}), 1.66-1.52(\mathrm{~m}$,
$2 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta 172.3,171.9,152.1,51.8$, 51.0, 46.0, 45.2, 39.2, 37.3, 36.0, 35.2, 34.4, 31.7, 30.2, 27.5, 16.5, 12.5, 12.2, 7.6, 7.5, 7.4, 7.3. HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: 211.1321. Found: 211.1297. $\Delta_{m}=11.4 \mathrm{ppm}$.

(S)-5-((1-(Cyclopropanecarbonyl)pyrrolidin-3-yl)methyl)-4-(2-fluoro-4-iodophenyl)-2,4-dihydro-3H-

1,2,4-triazol-3-one (12): To a flame-dried Schlenk tube (solution A) was added a solution of 2-fluoro-4iodoaniline ($4.3 \mathrm{~g}, 18 \mathrm{mmol}$) in dry THF (90 mL). Dry triethylamine ($20 \mathrm{~mL}, 144 \mathrm{mmol}$) was added, and the resulting mixture was stirred. To a separate flame-dried Schlenk flask (solution B), was added a stirred solution of triphosgene ($5.4 \mathrm{~g}, 18 \mathrm{mmol}$) in dry THF (90 mL). Solution A was slowly added to solution B via cannula, and the resulting slurry was stirred for 16 h at room temperature. The reaction solution was filtered through an air-free filter funnel with a fine glass frit into a fresh, flame-dried Schlenk flask and the solvent removed under vacuum to give a red oil. Dry dichloromethane (60 mL) was added and the mixture was stirred. In a nitrogen atmosphere glove box, hydrazide 11 ($1.9 \mathrm{~g}, 3.8 \mathrm{mmol}$) was dissolved in dry dichloromethane (25 mL) and added to the stirred reaction solution. The reaction was stirred for 16 h at room temperature, at which point a large amount of solid material (product) had precipitated. The product semi-carbazide was recovered by filtering the reaction solution through a $0.45 \mu \mathrm{~m}$ PTFE membrane filter to give a light amber solid ($4.2 \mathrm{~g}, 94 \%$). Then the semi-carbazide ($1 \mathrm{~g}, 2.1 \mathrm{mmol}$) was suspended in 10% isopropanol/water (70 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}, 10.5 \mathrm{mmol})$ added, and the mixture refluxed for 16 h . The solution was acidified to $\mathrm{pH} 5-5.5$, extracted with ethyl acetate ($10 \mathrm{~mL} \times 5$), dried over sodium sulfate, and concentrated under reduced pressure. The crude product was purified by column chromatography ($100 \% \mathrm{EtOAc} \rightarrow 5 \% \mathrm{MeOH} / \mathrm{EtOAc}$) to give 12 as a colorless solid ($0.55 \mathrm{~g}, 57 \%$). [Rotamers present in NMR spectra] ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 10.45(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 10.40(\mathrm{brs}, 0.5 \mathrm{H}), 7.68-7.64$ $(\mathrm{m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, \mathrm{J}=8.2,7.9,1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 0.5 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.34(\mathrm{~m}$, $0.5 \mathrm{H}), 3.26-3.22(\mathrm{~m}, 0.5 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 0.5 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 0.5 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 2.5 \mathrm{H}), 2.22-2.19(\mathrm{~m}$, $0.5 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 0.5 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 0.5 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1.5 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.69(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{CNMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta 172.42,172.37,158.5,155.9,154.75,154.69,146.0,135.0,131.2$, 131.1, 126.9, 126.8, 126.7, 126.6, 120.3, 120.20, 120.18, 120.1, 95.4, 95.33, 95.29, 95.2, 77.4, 51.8, 51.1, $45.9,45.3,35.9,34.2,31.6,30.4,29.4,29.3,12.6,12.4,7.79,7.73,7.6 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$: δ-117.7 (br s, 1F). HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FIN}_{4} \mathrm{O}_{2}$: 456.0458. Found: 456.0457. $\Delta_{\mathrm{m}}=0.2 \mathrm{ppm}$.

General cross-coupling procedure:

Triazolone 12 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$), arylboronic acid (0.26 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(91 \mathrm{mg}, 0.66 \mathrm{mmol})$ were weighed out in a nitrogen atmosphere glove box, transferred to a Schlenk tube, removed from the box and placed under nitrogen using a Schlenk line. Degassed $3: 1$ dioxane:water (1.5 mL) was added with stirring. In a nitrogen glove box, PdCl_{2} (dppf) (1 mg , cat.) was suspended in THF (0.5 mL), activated with a drop of n-BuLi (leading to a deep red solution), and added to the reaction mixture. The reaction vessels were sealed with a greased glass stopper and heated to $100^{\circ} \mathrm{C}$ for 16 h . Then the reaction was acidified to $\mathrm{pH} 5-5.5$ and extracted with ethyl acetate ($2 \mathrm{~mL} \times 4$). The extracts were combined, dried over sodium sulfate, and concentrated under reduced pressure. The crude products were purified by column chromatography (typically 50\% EtOAc/hexane $\rightarrow \mathbf{1 0 \%} \mathrm{MeOH} / \mathrm{EtOAc}$) to give $\mathbf{2}$ and $\mathbf{3}$ as amber oils.

(R)-4-(4-(Benzofuran-6-yl)-2-fluorophenyl)-5-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)methyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2): (95 mg, 97\%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 10.24$ (br s, 0.5 H), 10.12 (br s, 0.5 H), $7.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=8.5,2.8,1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{dt}, \mathrm{J}=$ 11.7, 2.0, 1H), $6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 0.5 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}$, $0.5 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 0.5 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 0.5 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 0.5 \mathrm{H}), 2.64-2.42(\mathrm{br} \mathrm{m}, 2.5 \mathrm{H}), 2.26-2.15(\mathrm{br}$ $\mathrm{m}, 0.5 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 0.5 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 0.5 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1.5 \mathrm{H}), 1.02-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.69(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$: $\delta 172.4,159.1,156.6,155.3,155.2,155.1,146.6,146.3,146.2$, $146.0,145.93,145.90,145.8,134.02,133.95,130.1,130.0,128.39,128.37,124.4,123.9,120.1,118.6$, $118.52,118.48,118.39,116.1,115.9,112.13,112.09,106.9,51.8,51.2,51.0,45.9,45.3,36.0,34.3,31.6$,
 calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{3}$: 446.1754. Found: 446.1685. $\Delta_{m}=15.4 \mathrm{ppm}$. $[\alpha]^{20}=-8.35 \pm 0.30^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-4-(4'-Chloro-3-fluoro-[1,1'-biphenyl]-4-yl)-5-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)methyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3): ($95 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 10.94$ (br s, 1 H), 7.50 (dd, J = 8.5, 1.6, 2H), 7.47-7.39 (m, 5H), 3.93-3.89 (m, 0.5H), 3.75-3.67 (m, 1H), 3.63-3.53 (m, 1H), 3.40$3.33(\mathrm{~m}, 0.5 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 0.5 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 0.5 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 0.5 \mathrm{H}), 2.63-2.40(\mathrm{~m}, 2.5 \mathrm{H}), 2.23-$ $2.14(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 0.5 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 0.5 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1.5 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.69$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}$): $\delta 172.5,159.1,156.5,155.15,155.09,146.2,144.1,144.0$, $143.9,137.2,137.1,135.0,134.9,130.3,130.2,129.41,129.38,128.5,123.9,119.31,119.23,119.18$, $119.10,115.7,115.5,51.8,51.2,45.9,45.3,35.9,34.3,31.5,30.4,29.4,29.2,12.6,12.3,7.74,7.67,7.57$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$): $\delta-119.7$ (br s, 1F). HRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{CIFN}_{4} \mathrm{O}_{2}$: 440.1415 . Found: 440.1339. $\Delta_{m}=17.3 \mathrm{ppm} .[\alpha]^{20}{ }_{\mathrm{D}}=-9.37 \pm 0.34^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of 5 and 6:

General triazolone methylation procedure:

Triazolone 2 or 3 (0.034 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.07 \mathrm{mmol})$ were combined in a storage tube with dry DMF $(0.5 \mathrm{~mL})$. Methyl iodide ($3 \mu \mathrm{~L}, 0.048 \mathrm{mmol}$) was added, the tube was sealed, and the reaction was heated to $80^{\circ} \mathrm{C}$ for 16 h . Then the reaction was poured into $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with ethyl acetate ($2 \mathrm{~mL} x$ 3). The organic extracts were combined, washed successively with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and brine (2 mL), dried over sodium sulfate, and concentrated under reduced pressure to afford N-methyltriazolones 5 and 6.

(R)-4-(4-(Benzofuran-6-yl)-2-fluorophenyl)-5-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)methyl)-2-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (5): (12 mg, 78\%). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 7.80(\mathrm{~s}$, $1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{dd}, \mathrm{J}=8.7,7.7,1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.90$ $(\mathrm{m}, 0.5 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 0.5 \mathrm{H}), 3.28-3.24(\mathrm{~m}$, $0.5 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 0.5 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 0.5 \mathrm{H}), 2.63-2.45(\mathrm{br} \mathrm{m}, 2.5 \mathrm{H}), 2.26-2.15(\mathrm{br} \mathrm{m}, 0.5 \mathrm{H}), 2.10-2.02$ $(\mathrm{m}, 0.5 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 0.5 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 1.5 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $\left.100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta 172.3,159.1,156.6,155.2,146.24,146.20,145.84,145.76,145.73,145.66,144.5$, 134.03, 133.98, 130.1, 130.0, 128.4, 124.3, 123.9, 120.1, 119.1, 119.02, 118.95, 118.89, 116.0, 115.9, $112.09,112.07,106.9,51.8,51.2,51.0,45.9,45.3,36.0,34.3,32.7,31.6,30.5,29.5,29.3,12.6,12.4,7.8$, 7.7, 7.6. ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$): $\delta-120.3$ (br s, 1F). HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}_{3}$: 460.1911. Found: $460.1846 . \Delta_{m}=14.1 \mathrm{ppm} .[\alpha]^{20}{ }_{\mathrm{D}}=-2.99 \pm 0.28^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-4-(4'-Chloro-3-fluoro-[1,1'-biphenyl]-4-yl)-5-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)methyl)-2-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (6): (15 mg, 60\%). $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 10.94$ (br $\mathrm{s}, 1 \mathrm{H}$), $7.52(\mathrm{br} \mathrm{d}, \mathrm{J}=8.4,2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 5 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 0.5 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 1 \mathrm{H})$, $3.52(\mathrm{~s}, 1.5 \mathrm{H}), 3.51(\mathrm{~s}, 1.5 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 0.5 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 0.5 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 0.5 \mathrm{H}), 2.70-2.63(\mathrm{~m}$, $0.5 \mathrm{H}), 2.63-2.40(\mathrm{~m}, 2.5 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 0.5 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 0.5 \mathrm{H}), 1.59-1.49(\mathrm{~m}$,
 $144.3,137.3,137.2,135.1,135.0,130.33,130.28,129.50,129.48,128.6,123.9,115.8,115.6,51.8,51.2$, $45.9,45.3,35.9,34.3,32.63,32.60,31.5,30.4,29.4,29.2,12.6,12.3,7.74,7.67,7.57 .{ }^{19} \mathrm{~F}$ NMR (CDCl ${ }_{3}, 376$ $\mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta-119.7$ (br s, 1F). HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{CIFN}_{4} \mathrm{O}_{2}$: 454.1572. Found: 454.1470. Δ_{m} $=22.5 \mathrm{ppm} .[\alpha]^{20}=-8.74 \pm 0.16^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2. UV and Radiochromatograms of Purified Products

Figure S1. Radio (top) and UV (bottom) chromatograms of purified [$\left.{ }^{11} \mathrm{C}\right]$ 4. Analysis was performed on a Phenomenex Luna C18(2) column ($5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}, 100 \AA$) using a $50: 500.3 \mathrm{M} \mathrm{NH} 4{ }_{4} \mathrm{COOH}(\mathrm{pH}$ 4.2): MeCN mobile phase at a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. The non-radioactive standard eluted with a retention time, t_{R}, of 4.94 min .

Figure S2. Radio (top) and UV (bottom) chromatograms of purified $\left[{ }^{11} \mathrm{C}\right] 5$. Analysis was performed on a Phenomenex Luna $\mathrm{C} 18(2)$ column ($5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}, 100 \AA$) using a $50: 500.3 \mathrm{M} \mathrm{NH} 4 \mathrm{COOH}$ (pH 4.2): MeCN mobile phase at a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. The non-radioactive standard eluted with a retention time, t_{k}, of 5.77 min .

Figure S3. Radio (top) and UV (bottom) chromatograms of purified [$\left.{ }^{11} \mathrm{C}\right] 6$. Analysis was performed on a Phenomenex Luna C18(2) column ($5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}, 100 \AA$ A) using a $50: 500.3 \mathrm{M} \mathrm{NH} 4 \mathrm{COOH}^{(\mathrm{cH}}$ 4.2): MeCN mobile phase at a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. The non-radioactive standard eluted with a retention time, t_{R}, of 7.69 min .

3. Determination of FASN Expression in LNCaP and PC3 cells

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

β-Actin

| $\mu \mathrm{g}$ | 5 20 5 20 5 20 | 5 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PC-3 | | | |

Figure S4. Shown are the FASN and β-actin staining due to 5 and $20 \mu \mathrm{~g}$ PC-3 (lanes 1 and 2), 5 and $20 \mu \mathrm{~g}$ LNCaP (lanes 3 and 4), 5 and $20 \mu \mathrm{~g}$ excised LNCaP xenograft tumor \#1 (lanes 5 and 6), and 5 and $20 \mu \mathrm{~g}$ LNCaP xenograft tumor \#2 (lanes 7 and 8).
4. Growth Inhibition Assay

Figure S5. Comparison of viability of LNCaP and PC3 cells treated with A. GSK2194069 or B. $\mathbf{2}$ (right).
5. Comparison of In vitro Uptake in Aggregated versus Sub-Confluence LNCaP cells

Figure S6. Comparison of $\left.{ }^{11} \mathrm{C}\right] 5$ binding to LNCaP cells cultured for $>48 \mathrm{~h}$ (black) and $<48 \mathrm{~h}$ (blue). The curves are corrected for decay and non-specific binding, but not corrected for protein content.

6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

7.

