89 research outputs found

    Robust and fragile PT-symmetric phases in a tight-binding chain

    Full text link
    We study the phase-diagram of a parity and time-reversal (PT) symmetric tight-binding chain with NN sites and hopping energy JJ, in the presence of two impurities with imaginary potentials ±iγ\pm i\gamma located at arbitrary (P-symmetric) positions (m,mˉ=N+1m)(m, \bar{m}=N+1-m) on the chain where mN/2m\leq N/2. We find that except in the two special cases where impurities are either the farthest or the closest, the PT-symmetric region - defined as the region in which all energy eigenvalues are real - is algebraically fragile. We analytically and numerically obtain the critical impurity potential γPT\gamma_{PT} and show that γPT1/N0\gamma_{PT}\propto 1/N\rightarrow 0 as NN\rightarrow\infty except in the two special cases. When the PT symmetry is spontaneously broken, we find that the maximum number of complex eigenvalues is given by 2m2m. When the two impurities are the closest, we show that the critical impurity strength γPT\gamma_{PT} in the limit NN\rightarrow\infty approaches JJ (J/2J/2) provided that NN is even (odd). For an even NN the PT symmetry is maximally broken whereas for an odd NN, it is sequentially broken. Our results show that the phase-diagram of a PT-symmetric tight-binding chain is extremely rich and that, in the continuum limit, this model may give rise to new PT-symmetric Hamiltonians.Comment: 10 pages, 4 figure

    Comparison of Biomaterial-Dependent and -Independent Bioprinting Methods for Cardiovascular Medicine

    Get PDF
    There is an increasing need of human organs for transplantation, of alternatives to animal experimentation, and of better in vitro tissue models for drug testing. All these needs create unique opportunities for the development of novel and powerful tissue engineering methods, among which the 3D bioprinting is one of the most promising. However, after decades of incubation, ingenuous efforts, early success and much anticipation, biomaterial-dependent 3D bioprinting, although shows steady progress, is slow to deliver the expected clinical results. For this reason, alternative ‘scaffold-free’ 3D bioprinting methods are developing in parallel at an accelerated pace. In this opinion paper we discuss comparatively the two approaches, with specific examples drawn from the cardiovascular field. Moving the emphasis away from competition, we show that the two platforms have similar goals but evolve in complementary technological niches. We conclude that the biomaterial-dependent bioprinting is better suited for tasks requiring faster, larger, anatomically-true, cell-homogenous and matrix-rich constructs, while the scaffold-free biofabrication is more adequate for cell-heterogeneous, matrix-poor, complex and smaller constructs, but requiring longer preparation time

    TSG-6 is highly expressed in human abdominal aortic aneurysms

    Get PDF
    BACKGROUND: The formation of abdominal aortic aneurysms (AAA) is characterized by a dominance of proinflammatory forces that result in smooth muscle cell apoptosis, extracellular matrix degradation, and progressive diameter expansion. Additional defects in the antiinflammatory response may also play a role but have yet to be fully characterized. TSG-6 (TNF-stimulated gene-6) is a potent antiinflammatory protein involved in extracellular matrix stabilization and cell migration active in many pathological conditions. Here, we describe its role in AAA formation. METHODS: Blood and/or aortic tissue samples were collected from organ donors, subjects undergoing elective AAA screening, and open surgical AAA repair. Aortic specimens collected were preserved for IHC or immediately assayed after tissue homogenization. Protein concentrations in tissue and plasma were assayed by ELISA. All immune cell populations were assayed using FACS. In vitro, macrophage polarization from monocytes was performed with young, healthy donor PBMCs. RESULTS: TSG-6 was found to be abnormally elevated in both the plasma and aortic wall of patients with AAA compared with healthy and risk-factor matched non-AAA donors. We observed the highest tissue concentration of TSG-6 in the less-diseased proximal and distal shoulders compared with the central aspect of the aneurysm. IHC localized most TSG-6 to the tunica media with minor expression in the tunica adventitia of the aortic wall. Higher concentrations of both M1 and M2 macrophages where also observed, however M1/M2 ratios were unchanged from healthy controls. We observed no difference in M1/M2 ratios in the peripheral blood of risk-factor matched non-AAA and AAA patients. Interesting, TSG-6 inhibited the polarization of the antiinflammatory M2 phenotype in vitro. CONCLUSIONS: AAA formation results from an imbalance of inflammatory forces causing aortic wall infiltration of mononuclear cells leading to the vessel breakdown. In the AAA condition, we report an elevation of TSG-6 expression in both the aortic wall and the peripheral circulation

    Human Adipose-Derived Stem Cells Suppress Elastase-Induced Murine Abdominal Aortic Inflammation and Aneurysm Expansion Through Paracrine Factors

    Get PDF
    Abdominal aortic aneurysm (AAA) is a potentially lethal disease associated with immune activation-induced aortic degradation. We hypothesized that xenotransplantation of human adipose-derived stem cells (hADSCs) would reduce aortic inflammation and attenuate expansion in a murine AAA model. Modulatory effects of ADSCs on immune cell subtypes associated with AAA progression were investigated using human peripheral blood mononuclear cells (hPBMNCs) cocultured with ADSCs. Murine AAA was induced through elastase application to the abdominal aorta in C57BL/6 mice. ADSCs were administered intravenously, and aortic changes were determined by ultrasonography and videomicrometry. Circulating monocytes, aortic neutrophils, CD28− T cells, FoxP3+ regulatory T cells (Tregs), and CD206+ M2 macrophages were assessed at multiple terminal time points. In vitro, ADSCs induced M2 macrophage and Treg phenotypes while inhibiting neutrophil transmigration and lymphocyte activation without cellular contact. Intravenous ADSC delivery reduced aneurysmal expansion starting from day 4 [from baseline: 54.8% (saline) vs. 16.9% (ADSCs), n = 10 at baseline, n = 4 at day 4, p < 0.001], and the therapeutic effect persists through day 14 (from baseline: 64.1% saline vs. 24.6% ADSCs, n = 4, p < 0.01). ADSC administration increased aortic Tregs by 20-fold (n = 5, p < 0.01), while decreasing CD4+CD28− (-28%), CD8+CD28− T cells (-61%), and Ly6G/C+ neutrophils (-43%, n = 5, p < 0.05). Circulating CD115+CXCR1−LY6C+-activated monocytes decreased in the ADSC-treated group by day 7 (-60%, n = 10, p < 0.05), paralleled by an increase in aortic CD206+ M2 macrophages by 2.4-fold (n = 5, p < 0.05). Intravenously injected ADSCs transiently engrafted in the lung on day 1 without aortic engraftment at any time point. In conclusion, ADSCs exhibit pleiotropic immunomodulatory effects in vitro as well as in vivo during the development of AAA. The temporal evolution of these effects systemically as well as in aortic tissue suggests that ADSCs induce a sequence of anti-inflammatory cellular events mediated by paracrine factors, which leads to amelioration of AAA progression

    An exactly solvable quantum-lattice model with a tunable degree of nonlocality

    Full text link
    An array of N subsequent Laguerre polynomials is interpreted as an eigenvector of a non-Hermitian tridiagonal Hamiltonian HH with real spectrum or, better said, of an exactly solvable N-site-lattice cryptohermitian Hamiltonian whose spectrum is known as equal to the set of zeros of the N-th Laguerre polynomial. The two key problems (viz., the one of the ambiguity and the one of the closed-form construction of all of the eligible inner products which make HH Hermitian in the respective {\em ad hoc} Hilbert spaces) are discussed. Then, for illustration, the first four simplest, kk-parametric definitions of inner products with k=0,k=1,k=2k=0,k=1,k=2 and k=3k=3 are explicitly displayed. In mathematical terms these alternative inner products may be perceived as alternative Hermitian conjugations of the initial N-plet of Laguerre polynomials. In physical terms the parameter kk may be interpreted as a measure of the "smearing of the lattice coordinates" in the model.Comment: 35 p

    Non linear pseudo-bosons versus hidden Hermiticity

    Full text link
    The increasingly popular concept of a hidden Hermiticity of operators (i.e., of their Hermiticity with respect to an {\it ad hoc} inner product in Hilbert space) is compared with the recently introduced notion of {\em non-linear pseudo-bosons}. The formal equivalence between these two notions is deduced under very general assumptions. Examples of their applicability in quantum mechanics are discussed.Comment: 20 p

    Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent

    Get PDF
    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells. © 2014 Bertuccio et al

    Apical Transport of Influenza A Virus Ribonucleoprotein Requires Rab11-positive Recycling Endosome

    Get PDF
    Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs). Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM). However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE) in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD) of Rab11 family interacting proteins (Rab11-FIPs). Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking

    Induction of Ran GTP drives ciliogenesis

    Get PDF
    The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis. The Ran-binding protein 1 (RanBP1), which indirectly accelerates Ran GTP → Ran GDP hydrolysis and promotes the dissociation of the Ran/importin complex, also localizes to basal bodies and cilia. To confirm the crucial link between Ran GTP and ciliogenesis, we manipulated the levels of RanBP1 and determined the effects on Ran GTP and primary cilia formation. We discovered that RanBP1 knockdown results in an increased concentration of Ran GTP at basal bodies, leading to ciliogenesis. In contrast, overexpression of RanBP1 antagonizes primary cilia formation. Furthermore, we demonstrate that RanBP1 knockdown disrupts the proper localization of KIF17, a kinesin-2 motor, at the distal tips of primary cilia in Madin–Darby canine kidney cells. Our studies illuminate a new function for Ran GTP in stimulating cilia formation and reinforce the notion that Ran GTP and the importins play key roles in ciliogenesis and ciliary protein transport
    corecore