1,278 research outputs found

    A novel mechanism of RNase L inhibition: Theiler\u27s virus L* protein prevents 2-5A from binding to RNase L

    Get PDF
    <div><p>The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L <i>in vivo</i>. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.</p></div

    Disulfide bond formation through Cys186 facilitates functionally relevant dimerization of trimeric hyaluronan-binding protein 1 (HABP1)/p32/gC1qR

    Get PDF
    Hyaluronan-binding protein 1 (HABP1), a ubiquitous multifunctional protein, interacts with hyaluronan, globular head of complement component 1q (gC1q), and clustered mannose and has been shown to be involved in cell signalling. In vitro, this recombinant protein isolated from human fibroblast exists in different oligomeric forms, as is evident from the results of various independent techniques in near-physiological conditions. As shown by size-exclusion chromatography under various conditions and glutaraldehyde cross-linking, HABP1 exists as a noncovalently associated trimer in equilibrium with a small fraction of a covalently linked dimer of trimers, i.e. a hexamer. The formation of a covalently-linked hexamer of HABP1 through Cys186 as a dimer of trimers is achieved by thiol group oxidation, which can be blocked by modification of Cys186. The gradual structural transition caused by cysteine-mediated disulfide linkage is evident as the fluorescence intensity increases with increasing Hg2+ concentration until all the HABP1 trimer is converted into hexamer. In order to understand the functional implication of these transitions, we examined the affinity of the hexamer for different ligands. The hexamer shows enhanced affinity for hyaluronan, gC1q, and mannosylated BSA compared with the trimeric form. Our data, analyzed with reference to the HABP1/p32 crystal structure, suggest that the oligomerization state and the compactness of its structure are factors that regulate its function

    Structural flexibility of multifunctional HABP1 may be important for regulating its binding to different ligands

    Get PDF
    Hyaluronan-binding protein 1 (HABP1)/p32/gC1qR was characterized as a highly acidic and oligomeric protein, which binds to different ligands like hyaluronan, C1q, and mannosylated albumin. It exists as trimer in high ionic and reducing conditions as shown by crystal structure. In the present study, we have examined the structural changes of HABP1 under a wide range of ionic environments. HABP1 exhibits structural plasticity, which is influenced by the ionic environment under in vitro conditions near physiological pH. At low ionic strength HABP1 exists in a highly expanded and loosely held trimeric structure, similar to that of the molten globule-like state, whereas the presence of salt stabilizes the trimeric structure in a more compact fashion. It is likely that the combination of the high net charge asymmetrically distributed along the faces of the molecule and the relatively low intrinsic hydrophobicity of HABP1 result in its expanded structure at neutral pH. Thus, the addition of counter ions in the molecular environment minimizes the intramolecular electrostatic repulsion in HABP1 leading to its stable and compact conformations, which reflect in its differential binding toward different ligands. Whereas the binding of HABP1 toward HA is enhanced on increasing the ionic strength, no significant effect was observed with the two other ligands, C1q and mannosylated albumin. Thus, although HA interacts only with compact HABP1, C1q and mannosylated albumin can bind to loosely held oligomeric HABP1 as well. In other words, structural changes in HABP1 mediated by changes in the ionic environment are responsible for recognizing different ligands

    Rola infekcji wirusem Epstein-Barr’a w rozwoju autoimmunologicznych chorób tarczycy

    Get PDF
    Introduction: Autoimmune thyroid diseases, including Graves’ and Hashimoto’s thyroiditis, are the most frequent autoimmune disorders. Viral infection, including Epstein-Barr virus (EBV), is one of the most frequently considered environmental factors involved in autoimmunity. Its role in the development of AITD has not been confirmed so far.Material and methods: Surgical specimens of Graves’ and Hashimoto’s diseases and nodular goitres were included in the study. The expression of EBV latent membrane protein 1 (LMP1) was analysed by immunohistochemistry, with the parallel detection of virus-encoded small nuclear non-polyadenylated RNAs (EBER) by in situ hybridisation.Results: In none of the Graves’ disease specimens but in 34.5% of Hashimoto’s thyroiditis cases the cytoplasmic expression of LMP1 was detected in follicular epithelial cells and in infiltrating lymphocytes. EBER nuclear expression was detected in 80.7% of Hashimoto’s thyroiditis cases and 62.5% of Graves´ disease cases, with positive correlation between LMP1 and EBER positivity in all Hashimoto’s thyroiditis LMP1-positive cases.Conclusions: We assume that high prevalence of EBV infection in cases of Hashimoto’s and Graves’ diseases imply a potential aetiological role of EBV in autoimmune thyroiditis. The initiation of autoimmune thyroiditis could start with EBV latency type III infection of follicular epithelium characterised by LMP1 expression involving the production of inflammatory mediators leading to recruitment of lymphocytes. The EBV positivity of the infiltrating lymphocytes could be only the presentation of a carrier state, but in cases with EBER+/ LMP1+ lymphocytes (transforming latent infection) it could represent a negative prognostic marker pointing to a higher risk of primary thyroid lymphoma development. (Endokrynol Pol 2015; 66 (2): 132–136)Wstęp: Autoimmunologiczne choroby taczycy, w tym zapalenia tarczycy Graves’a i Hashimoto, są najczęstszymi zaburzeniami autoimmunologicznymi. Infekcja wirusowa, w tym wirusem Epstein-Barr’a (EBV), jest jednym z najczęściej rozważanych czynników środowiskowych łączonych z autoimmunologią. Jego rola w rozwoju autoimmunologicznyh chorób taczycy (AITD) nie została do tej pory potwierdzona.Materiały i metody: Zbadano chirurgicznie pobrane preparaty od chorych na chorobę Gravesa, chorobę Hashimoto i wole guzowate. Ekspresja latentnego białka błonowego 1 (LMP1) EBV była zanalizowana metodami immunohistochemicznymi, z równoczesnym wykrywaniem kodowanych wirusem, małych, jądrzastych, niespoliadenylowanych RNA (EBER) poprzez hybrydazcję in situ.Wyniki: W żadnym z przypadków choroby Gravesa nie stwierdzono w komórkach pęcherzykowych i naciekających limfocytach ekspresji LMP1w cytoplazmie, ale wykryto ją w 34,5% przypadkach choroby Hashimoto. Jądrowa ekspresja EBER została wykryta w 80,7% przypadków zapalenia tarczycy Hashimoto i w 62,5% choroby Gravesa. Zauważono również dodatnią korelację pomiędzy LMP1 i występowaniem EBER we wszystkich przypadkach choroby Hashimoto LMP1+.Wnioski: Autorzy uwazają, że powszechne występowanie infekcji EBV w chorobach Hashimoto i Gravesa sugeruje potencjalną rolą etiologiczną EBV w rozwoju autoimmunologicznych zapaleń tarczycy. Zapoczątkowaniem autoimmunologicznych zapaleń tarczycy może być utajona infekcja EBV typu III, charakteryzująca się ekspresją LMP1 w komórkach pęcherzykowych i związana z produkcją mediatorów zapalnych prowadzącą do migracji limfocytów. Obecność EBV w naciekach limfocytarnych może być jedynie charakterystyczna dla nosiciela wirusa ale w przypadku obecności limfocytów EBER+/LMP1+ (przekształcajcych infekcję utajoną) może być negatywnym markerem prognostycznym wskazując podwyższone ryzyko rozwoju pierwotnego chłoniaka tarczycy. (Endokrynol Pol 2015; 66 (2): 132–136

    Lineage A betacoronavirus NS2 proteins and the homologous torovirus Berne pp1a carboxy-terminal domain are phosphodiesterases that antagonize activation of RNase L

    Get PDF
    Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3′ ends of their genomes, that often act as host cell antagonists. We previously showed that 2′,5′-phosphodiesterases (2′,5′-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2′,5′-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHV(Mut)) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2′,5′-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHV(Mut) in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHV(Mut) replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it. IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2′,5′-phosphodiesterases (2′,5′-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target

    Guest-Tunable Dielectric Sensing Using a Single Crystal of HKUST-1

    Get PDF
    There is rising interest on low-k dielectric materials based on porous metal-organic frameworks (MOFs) for improved electrical insulation in microelectronics. Herein, we demonstrate the concept of MOF dielectric sensor built from a single crystal of HKUST-1. We study guest encapsulation effects of polar and non-polar molecules, by monitoring the transient dielectric response and AC conductivity of the crystal exposed to different vapors (water, I2, methanol, ethanol). The dielectric properties were measured along the crystal direction in the frequency range of 100 Hz to 2 MHz. The dielectric data show the efficacy of MOF dielectric sensor for discriminating the guest analytes. The time-dependent transient response reveals dynamics of the molecular inclusion and exclusion processes in the nanoscale pores. Since dielectric response is ubiquitous to all MOF materials (unlike DC conductivity and fluorescence), our results demonstrate the potential of dielectric MOF sensors compared to resistive sensors and luminescence-based approaches.Comment: 6 pages, 5 figure

    Synergistic effect on static and dynamic mechanical properties of carbon fiber-multiwalled carbon nanotube hybrid polycarbonate composites

    Get PDF
    Carbon fiber (CF) and multiwalled carbon nanotube (MWCNT)-reinforced hybrid micro-nanocomposites are prepared through melt mixing followed by injection moulding. The synergistic effect on both the static and dynamic mechanical properties with MWCNT/aMWCNT and CF reinforcement in a polycarbonate matrix is investigated by utilizing dynamic mechanical analysis, and flexural and tensile measurements. The enhancement in the flexural modulus and strength of the composite specimens as compared to pure PC for maximum loading of CF is 128.40% and 39.90%, respectively, which further improved to 142.94% and 42.60%, respectively, for CF-functionalized MWCNTs. Similarly, the storage modulus of the composite specimens reinforced with a maximum loading of CF and CF-functionalized MWCNTs show an increment of 176.57% and 203.33%, respectively over pure PC at 40 degrees C. Various types of parameter such as the coefficient C factor, degree of entanglement and adhesion factor have been calculated to analyze the interaction between fillers and the polymer matrix. Composite specimens containing 2 wt% of functionalized MWCNTs show a lower C value than the as-synthesized MWCNTs, which is indicative of a higher effectiveness of functionalized MWCNT-containing composite specimens. These results are well supported by optical microscopy and Raman spectroscopy by confirming the distribution of reinforcement

    Evidence for inhibitory interaction of hyaluronan-binding protein 1 (HABP1/p32/gC1qR) with Streptococcus pneumoniae hyaluronidase

    Get PDF
    Bacterial hyaluronan lyase enzymes are the major virulence factors that enable greater microbial ingress by cleaving hyaluronan (HA) polymers present predominantly in extracellular space of vertebrates. Based on the premise that effective inhibitors may bind to and stabilize HA thereby protecting it from degradation, here we investigated inhibitory activity of human hyaluronan-binding protein 1 (HABP1) on bacterial hyaluronidase because it is highly specific to HA and localized on the cell surface. Biochemical characterization revealed that HABP1 is a competitive inhibitor of Streptococcus pneumoniae hyaluronate lyase (SpnHL) with an IC50 value of 22 &#956;m. This is thus the first report of an endogenous protein inhibitor that may be used during natural antibacterial defense. Our findings also support a novel multipronged mechanism for the high efficacy of HABP1-mediated inhibition based on structural modeling of enzyme, substrate, and inhibitor. Evidence from docking simulations and contact interface interactions showed that the inherent charge asymmetry of HABP1 plays a key role in the inhibitory activity. This novel role of HABP1 may pave the way for peptide inhibitors as alternatives to synthetic chemicals in antibacterial research

    Effect of Irrigation Density on Seedling Morphology in Taurus Cedar (Cedrus libani A. Rich.)

    Get PDF
    Irrigation was one of the most important nursery practices for both cost and quality of seedlings. We aimed to determine relation between the irrigation density and seedling quality in Taurus Cedar grown in Egirdir Forest Nursery at southern Turkey based on second year morphological data to contribute nursery practice of the species. Irrigation experiments were designed for each 3, 5 and 7 days as two replicates in the nursery. And also a treatment was put present nursery irrigation practice as control. Until germination the sowing was humidity, while after germination the seedlings were irrigated each 3 (III), 5 (V) and 7 (VII) days, and also present irrigation regime of the nursery called control (C). Seedling morphology was compared for the densities and also traditional irrigation treatment to contribute nursery practice of the species based on second year data. The results showed that all irrigation density had different effects on seedling morphology. It is needed to collect more data on from different nurseries and irrigation densities to draw accurate conclusion. However, the differences among irrigation densities showed different irrigation densities could be applied according to climatic (i.e., arid area) and edaphic characteristic of afforestation area
    • …
    corecore