195 research outputs found
MFGE8 does not influence chorio-retinal homeostasis or choroidal neovascularization in vivo
Purpose: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice.
Methods: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8+/− mice expressing ß-galactosidase. Aged Mfge8+/− and Mfge8−/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV.
Results: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls.
Conclusions: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD
From Multiview Image Curves to 3D Drawings
Reconstructing 3D scenes from multiple views has made impressive strides in
recent years, chiefly by correlating isolated feature points, intensity
patterns, or curvilinear structures. In the general setting - without
controlled acquisition, abundant texture, curves and surfaces following
specific models or limiting scene complexity - most methods produce unorganized
point clouds, meshes, or voxel representations, with some exceptions producing
unorganized clouds of 3D curve fragments. Ideally, many applications require
structured representations of curves, surfaces and their spatial relationships.
This paper presents a step in this direction by formulating an approach that
combines 2D image curves into a collection of 3D curves, with topological
connectivity between them represented as a 3D graph. This results in a 3D
drawing, which is complementary to surface representations in the same sense as
a 3D scaffold complements a tent taut over it. We evaluate our results against
truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an
overview of the supplementary material available at
multiview-3d-drawing.sourceforge.ne
Single-Image Depth Prediction Makes Feature Matching Easier
Good local features improve the robustness of many 3D re-localization and
multi-view reconstruction pipelines. The problem is that viewing angle and
distance severely impact the recognizability of a local feature. Attempts to
improve appearance invariance by choosing better local feature points or by
leveraging outside information, have come with pre-requisites that made some of
them impractical. In this paper, we propose a surprisingly effective
enhancement to local feature extraction, which improves matching. We show that
CNN-based depths inferred from single RGB images are quite helpful, despite
their flaws. They allow us to pre-warp images and rectify perspective
distortions, to significantly enhance SIFT and BRISK features, enabling more
good matches, even when cameras are looking at the same scene but in opposite
directions.Comment: 14 pages, 7 figures, accepted for publication at the European
conference on computer vision (ECCV) 202
Reanalysis in Earth System Science: Towards Terrestrial Ecosystem Reanalysis
A reanalysis is a physically consistent set of optimally merged simulated model states and historical observational data, using data assimilation. High computational costs for modelled processes and assimilation algorithms has led to Earth system specific reanalysis products for the atmosphere, the ocean and the land separately. Recent developments include the advanced uncertainty quantification and the generation of biogeochemical reanalysis for land and ocean. Here, we review atmospheric and oceanic reanalyses, and more in detail biogeochemical ocean and terrestrial reanalyses. In particular, we identify land surface, hydrologic and carbon cycle reanalyses which are nowadays produced in targeted projects for very specific purposes. Although a future joint reanalysis of land surface, hydrologic and carbon processes represents an analysis of important ecosystem variables, biotic ecosystem variables are assimilated only to a very limited extent. Continuous data sets of ecosystem variables are needed to explore biotic-abiotic interactions and the response of ecosystems to global change. Based on the review of existing achievements, we identify five major steps required to develop terrestrial ecosystem reanalysis to deliver continuous data streams on ecosystem dynamics
Platelet Function in Acute Experimental Pancreatitis
Acute pancreatitis (AP) is characterized by disturbances of pancreatic microcirculation. It remains unclear whether platelets contribute to these perfusion disturbances. The aim of our study was to investigate platelet activation and function in experimental AP. Acute pancreatitis was induced in rats: (1) control (n = 18; Ringer’s solution), (2) mild AP (n = 18; cerulein), and (3) severe AP (n = 18; glycodeoxycholic acid (GDOC) + cerulein). After 12 h, intravital microscopy was performed. Rhodamine-stained platelets were used to investigate velocity and endothelial adhesion in capillaries and venules. In addition, erythrocyte velocity and leukocyte adhesion were evaluated. Serum amylase, thromboxane A2, and histology were evaluated after 24 h in additional animals of each group. Results showed that 24 h after cerulein application, histology exhibited a mild AP, whereas GDOC induced severe necrotizing AP. Intravital microscopy showed significantly more platelet–endothelium interaction, reduced erythrocyte velocity, and increased leukocyte adherence in animals with AP compared to control animals. Thromboxane levels were significantly elevated in all AP animals and correlated with the extent of platelet activation and severity of AP. In conclusion, platelet activation plays an important role in acute, especially necrotizing, pancreatitis. Mainly temporary platelet–endothelium interaction is observed during mild AP, whereas severe AP is characterized by firm adhesion with consecutive coagulatory activation and perfusion failure
Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling
Knowledge of number, size and content of insulin secretory granules is pivotal for understanding the physiology of pancreatic beta cells. Here we re-evaluated key structural features of rat beta cells, including insulin granule size, number and distribution as well as cell size
Remote sensing of geomorphodiversity linked to biodiversity — part III: traits, processes and remote sensing characteristics
Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed
- …