36 research outputs found

    New Einstein-Hilbert-type Action and Superon-Graviton Model(SGM) of Nature

    Full text link
    A nonlinear supersymmetric(NLSUSY) Einstein-Hilbert(EH)-type new action for unity of nature is obtained by performing the Einstein gravity analogue geomtrical arguments in high symmetry spacetime inspired by NLSUSY. The new action is unstable and breaks down spontaneously into E-H action with matter in ordinary Riemann spacetime. All elementary particles except graviton are composed of the fundamental fermion "superon" of Nambu-Goldstone(NG) fermion of NLSUSY and regarded as the eigenstates of SO(10) super-Poincar\'e (SP) algebra, called superon-graviton model(SGM) of nature. Some phenomenological implications for the low energy particle physics and the cosmology are discussed. The linearization of NLSUSY including N=1 SGM action is attempted explicitly to obtain the linear SUSY local field theory, which is equivalent and renormalizable.Comment: 37 pages, Latex, Based on a talk by K. Shima at International Conference on Mathematics and Nucler Physics for the 21st Century, March 8-13, 2003, Atomic Energy Authority, Cairo, Egyp

    Analysis of Hamiltonian formulations of linearized General Relativity

    Full text link
    The different forms of the Hamiltonian formulations of linearized General Relativity/spin-two theories are discussed in order to show their similarities and differences. It is demonstrated that in the linear model, non-covariant modifications to the initial covariant Lagrangian (similar to those modifications used in full gravity) are in fact unnecessary. The Hamiltonians and the constraints are different in these two formulations but the structure of the constraint algebra and the gauge invariance derived from it are the same. It is shown that these equivalent Hamiltonian formulations are related to each other by a canonical transformation which is explicitly given. The relevance of these results to the full theory of General Relativity is briefly discussed.Comment: Section Discussion is modified and references are added; 19 page

    Predictors of diagnostic yield in bronchoscopy: a retrospective cohort study comparing different combinations of sampling techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reported diagnostic yield from bronchoscopies in patients with lung cancer varies greatly. The optimal combination of sampling techniques has not been finally established.</p> <p>The objectives of this study were to find the predictors of diagnostic yield in bronchoscopy and to evaluate different combinations of sampling techniques.</p> <p>Methods</p> <p>All bronchoscopies performed on suspicion of lung malignancy in 2003 and 2004 were reviewed, and 363 patients with proven malignant lung disease were included in the study. Sampling techniques performed were biopsy, transbronchial needle aspiration (TBNA), brushing, small volume lavage (SVL), and aspiration of fluid from the entire procedure. Logistic regression analyses were adjusted for sex, age, endobronchial visibility, localization (lobe), distance from carina, and tumor size.</p> <p>Results</p> <p>The adjusted odds ratios (OR) with 95% confidence intervals (CI) for a positive diagnostic yield through all procedures were 17.0 (8.5–34.0) for endobronchial lesions, and 2.6 (1.3–5.2) for constriction/compression, compared to non-visible lesions; 3.8 (1.3–10.7) for lesions > 4 cm, 6.7 (2.1–21.8) for lesions 3–4 cm, and 2.5 (0.8–7.9) for lesions 2–3 cm compared with lesions <= 2 cm. The combined diagnostic yield of biopsy and TBNA was 83.7% for endobronchial lesions and 54.2% for the combined group without visible lesions. This was superior to either technique alone, whereas additional brushing, SVL, and aspiration did not significantly increase the diagnostic yield.</p> <p>Conclusion</p> <p>In patients with malignant lung disease, visible lesions and larger tumor size were significant predictors of higher diagnostic yield, after adjustment for sex, age, distance from carina, side and lobe. The combined diagnostic yield of biopsy and TBNA was significant higher than with either technique alone.</p

    Quantization of an interacting spin-3/2 field and the Delta isobar

    Full text link
    Quantization of the free and interacting Rarita-Schwinger field is considered using the Hamiltonian path-integral formulation. The particular interaction we study in detail is the \pi N \De coupling used in the phenomenology of the pion-nucleon and nucleon-nucleon systems. Within the Dirac constraint analysis, we show that there is an excess of degrees of freedom in the model, as well as the inconsistency related to the Johnson-Sudarshan-Velo-Zwanzinger problem. It is further suggested that couplings invariant under the gauge transformation of the Rarita-Schwinger field are generally free from these inconsistencies. We then construct and briefly analyse some lowest in derivatives gauge-invariant \pi N \De couplings.Comment: 20 pages, published versio

    High-energy algebras

    No full text

    Supergrand exceptional unification and quark-lepton constituents

    No full text
    corecore