484 research outputs found

    Knotted holomorphic discs in

    Get PDF
    We construct knotted proper holomorphic embeddings of the unit disc i

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    Insulin Glargine in the Intensive Care Unit: A Model-Based Clinical Trial Design

    Get PDF
    Online 4 Oct 2012Introduction: Current succesful AGC (Accurate Glycemic Control) protocols require extra clinical effort and are impractical in less acute wards where patients are still susceptible to stress-induced hyperglycemia. Long-acting insulin Glargine has the potential to be used in a low effort controller. However, potential variability in efficacy and length of action, prevent direct in-hospital use in an AGC framework for less acute wards. Method: Clinically validated virtual trials based on data from stable ICU patients from the SPRINT cohort who would be transferred to such an approach are used to develop a 24-hour AGC protocol robust to different Glargine potencies (1.0x, 1.5x and 2.0x regular insulin) and initial dose sizes (dose = total insulin over prior 12, 18 and 24 hours). Glycemic control in this period is provided only by varying nutritional inputs. Performance is assessed as %BG in the 4.0-8.0mmol/L band and safety by %BG<4.0mmol/L. Results: The final protocol consisted of Glargine bolus size equal to insulin over the previous 18 hours. Compared to SPRINT there was a 6.9% - 9.5% absolute decrease in mild hypoglycemia (%BG<4.0mmol/L) and up to a 6.2% increase in %BG between 4.0 and 8.0mmol/L. When the efficacy is known (1.5x assumed) there were reductions of: 27% BG measurements, 59% insulin boluses, 67% nutrition changes, and 6.3% absolute in mild hypoglycemia. Conclusion: A robust 24-48 clinical trial has been designed to safely investigate the efficacy and kinetics of Glargine as a first step towards developing a Glargine-based protocol for less acute wards. Ensuring robustness to variability in Glargine efficacy significantly affects the performance and safety that can be obtained

    Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)

    Full text link
    With the increased use of ontologies in semantically-enabled applications, the issue of debugging defects in ontologies has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Debugging consists of the phases of detection and repairing. In this paper we focus on the repairing phase of a particular kind of defects, i.e. the missing relations in the is-a hierarchy. Previous work has dealt with the case of taxonomies. In this work we extend the scope to deal with ALC ontologies that can be represented using acyclic terminologies. We present algorithms and discuss a system

    Algorithm for Adapting Cases Represented in a Tractable Description Logic

    Full text link
    Case-based reasoning (CBR) based on description logics (DLs) has gained a lot of attention lately. Adaptation is a basic task in the CBR inference that can be modeled as the knowledge base revision problem and solved in propositional logic. However, in DLs, it is still a challenge problem since existing revision operators only work well for strictly restricted DLs of the \emph{DL-Lite} family, and it is difficult to design a revision algorithm which is syntax-independent and fine-grained. In this paper, we present a new method for adaptation based on the DL EL\mathcal{EL_{\bot}}. Following the idea of adaptation as revision, we firstly extend the logical basis for describing cases from propositional logic to the DL EL\mathcal{EL_{\bot}}, and present a formalism for adaptation based on EL\mathcal{EL_{\bot}}. Then we present an adaptation algorithm for this formalism and demonstrate that our algorithm is syntax-independent and fine-grained. Our work provides a logical basis for adaptation in CBR systems where cases and domain knowledge are described by the tractable DL EL\mathcal{EL_{\bot}}.Comment: 21 pages. ICCBR 201

    Predicting the understandability of OWL inferences

    Get PDF
    In this paper, we describe a method for predicting the understandability level of inferences with OWL. Specifically, we present a model for measuring the understandability of a multiple-step inference based on the measurement of the understandability of individual inference steps. We also present an evaluation study which confirms that our model works relatively well for two-step inferences with OWL. This model has been applied in our research on generating accessible explanations for an entailment of OWL ontologies, to determine the most understandable inference among alternatives, from which the final explanation is generated

    A Human-Oriented Term Rewriting System

    Get PDF
    © Springer Nature Switzerland AG 2019. We introduce a fully automatic system, implemented in the Lean theorem prover, that solves equality problems of everyday mathematics. Our overriding priority in devising the system is that it should construct proofs of equality in a way that is similar to that of humans. A second goal is that the methods it uses should be domain independent. The basic strategy of the system is to operate with a subtask stack: whenever there is no clear way of making progress towards the task at the top of the stack, the program finds a promising subtask, such as rewriting a subterm, and places that at the top of the stack instead. Heuristics guide the choice of promising subtasks and the rewriting process. This makes proofs more human-like by breaking the problem into tasks in the way that a human would. We show that our system can prove equality theorems simply, without having to preselect or orient rewrite rules as in standard theorem provers, and without having to invoke heavy duty tools for performing simple reasoning
    corecore