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Predicting the Understandability

of OWL Inferences

Tu Anh T. Nguyen, Richard Power, Paul Piwek, and Sandra Williams

Department of Computing, The Open University, Milton Keynes, UK
{t.nguyen,r.power,p.piwek,s.h.williams}@open.ac.uk

Abstract. In this paper, we describe a method for predicting the un-
derstandability level of inferences with OWL. Specifically, we present a
probabilistic model for measuring the understandability of a multiple-
step inference based on the measurement of the understandability of
individual inference steps. We also present an evaluation study which
confirms that our model works relatively well for two-step inferences
with OWL. This model has been applied in our research on generating
accessible explanations for an entailment of OWL ontologies, to deter-
mine the most understandable inference among alternatives, from which
the final explanation is generated.

1 Introduction

The emergence of the semantic web community during the last decade has led
to agreement on a common ontology language for exchanging knowledge called
OWL (Web Ontology Language) [1]. Since being adopted as a standard language
by the W3C in 2004, OWL has become widespread in many domains. Research
on reasoning services for automatically computing logical inferences from OWL
ontologies has also been intensively investigated since then, and resulted in au-
tomated reasoners such as FaCT++ [15], Pellet [14], and HermiT [10]. However,
there has been little research investigating the cognitive difficulty of OWL infer-
ences for humans, which is an essential problem in ontology debugging.

An important tool in debugging ontologies is to inspect entailments generated
by an automated reasoner. An obviously incorrect entailed statement such as
SubClassOf(Person,Movie) (“Every person is a movie”) signals that something has
gone wrong. However, many developers, especially those with limited knowledge
of OWL, will need more information in order to make the necessary corrections:
they need to understand why this entailment follows from the ontology, before
they can start to repair it. Various axiom pinpointing tools have been proposed
to compute justifications of an entailment—defined as any minimal subset of
the ontology from which the entailment can be drawn—including both reasoner-
dependent approaches [13,2] and reasoner-independent approaches [7,6]. A justi-
fication provides a set of premises for an entailment, so is helpful for diagnosing
an erroneous entailment; however, unlike a proof, it does not explain how the
premises combine with each other to produce the entailment. A user study [5] has
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shown that for many justifications (an example is shown in Table 1) even OWL
experts were unable to work out how the conclusion follows from the premises
without further explanation. For non-expert developers, the opacity of standard
OWL syntaxes such as OWL/RDF, which are designed for efficient processing
by computer programs and not for fast comprehension by people, can be another
obstacle. As a possible solution to this problem, we are developing a system that
explains, in English, why an entailment follows from an ontology.

Table 1. An example explanation generated by our prototype

In
p
u
t

Entailment: SubClassOf(Person,Movie)
Justification:
1. EquivalentClasses(GoodMovie,ObjectAllValuesFrom(hasRating,FourStarRating))
2. ObjectPropertyDomain(hasRating,Movie)
3. SubClassOf(GoodMovie,StarRatedMovie)
4. SubClassOf(StarRatedMovie,Movie)

O
u
tp

u
t

The statement “Every person is a movie” follows because:
- everything is a movie (a).

Statement (a) follows because:
- anything that has as rating something is a movie (from axiom 2), and
- everything that has no rating at all is a movie (b).

Statement (b) follows because:
- everything that has no rating at all is a good movie (c), and
- every good movie is a movie (d).

Statement (c) follows because axiom 1 in the justification means that “a good
movie is anything that has as rating nothing at all, or has as rating only four-star
ratings”.
Statement (d) follows because:

- every good movie is a star rated movie (from axiom 3), and
- every star rated movie is a movie (from axiom 4).

Table 1 shows an explanation generated by our prototype for the (obviously
absurd) entailment “Every person is a movie” based on the proof tree in Figure 1.
The key to understanding this proof lies in the step from axiom 1 to statement
(c), which is an example of an inference in need of “further elucidation”.

To generate such explanations, our system starts from a justification of the
entailment, which can be computed using the method described by Kalyan-
pur et al. [7], and constructs proof trees in which the root node is the entail-
ment, the terminal nodes are the axioms in the justification, and other nodes
are intermediate statements (i.e., lemmas). Proof trees are constructed from
a set of intuitively plausible deduction rules which account for a large collec-
tion of deduction patterns, with each local tree corresponding to a rule. For a
given justification, the deduction rules might allow several proof trees, in which
case we need a criterion for choosing the most understandable one.1 From the

1 Alternatively the deduction rules might not yield any proof trees, in which case the
system has to fall back on simply verbalising the justification. Obviously such cases
will become rarer as we expand the set of rules.
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selected proof tree, the system generates an English explanation. Hard inference
steps will be identified, and further elucidation will be added when necessary
to make them understandable for most people. Such an explanation should be
easier to understand than one based on the justification alone, as it replaces a
single complex inference step with a number of simpler steps.

Fig. 1. The proof tree of the explanation in Table 1. The labels r6 etc. refer to rules
listed in Table 4. FI values represent how easy it is to understand the rules—their
Facility Indexes—with values ranging from 0.0 (hardest) to 1.0 (easiest).

As mentioned before, there may be multiple proof trees linking a justification
to an entailment, and so multiple potential explanations of how the justification
and the entailment are connected, some of which may be easier to follow than
others. Therefore, being able to predict the understandability of a proof tree
would be of great help in planning effective explanations for a given entailment.
Specifically, it would enable the system to identify the most understandable
explanation for a given justification. Additionally, when multiple justifications
for an entailment are found, it would enable the system to sort explanations in
order of decreasing understandability, which is very useful for end-users.

In prior work [12], we described how our current set of deduction rules was col-
lected through analysis of a large corpus of approximately 500 OWL ontologies,
and reported on an empirical study that allowed us to assign understandability
indexes to the deduction rules. We called these indexes facility indexes (FIs). An
FI of a deduction rule provides our best estimate of the probability that a per-
son will understand the relevant inference step—i.e., that a person will recognise
that the conclusion of the rule follows from the premises. Therefore, it ranges
from 0.0 to 1.0, and the higher it is, the easier the inference. The result of this
work is a list of 51 single-step inferences with known FIs, as shown in Table 4
(at the end of this paper) with the inferences sorted by FIs.

This paper focusses on the understandability of an entire proof tree. A proof
tree can be viewed as a complex inference. When a tree has no lemma nodes, it
corresponds to a single-step inference. Otherwise, it corresponds to a multiple-
step inference, as in Figure 1. We propose here a model which predicts the un-
derstandability of a multiple-step inference based on the FIs of individual steps.
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We also report on an evaluation study which confirms that our model works rel-
atively well in detecting differences in understandability of two-step inferences.
In this study we analysed both the participants’ subjective reported understand-
ing (how difficult they found the task), and their objective performance on the
task (how often they got it right). The proposed model has been applied in our
system to identify the best explanation for a given justification as well as to sort
explanations by decreasing understandability when multiple justifications for a
given entailment are found. We envisage that this model can be used by others
to predict the understandability of different kinds of inferences.

2 Related Work

Several support tools have been proposed to help ontology developers to identify
the causes of class unsatisfiability [8], and to rewrite potentially problematic
axioms [9]. Two studies have been conducted [8,9] to evaluate how ontology
developers debug ontologies with and without the tools. However, these studies
focus on how people with a good understanding of OWL perform debugging,
but not on how well they understand OWL inferences.

In a deduction rule, the conclusion can be viewed as an entailment, and the
premises can be viewed as a justification of the entailment. Horridge et al. have
proposed a model for measuring the cognitive difficulty of a justification [3].
In this model, they provide a list of components, each of which has an associ-
ated weight. For a given justification, the model checks for all appearances of
these components, sums the weighted number of occurrences of the components,
and outputs the result as the justification’s difficulty score. The choice of the
components and their weights is based on the authors’ observations from an
exploratory study [5] and their intuitions. Moreover, most of the proposed com-
ponents are based on the syntactic analysis of justifications such as the number
of premises in a justification, and these syntax-based components are mostly
assigned a high weight. There are also several components for revealing difficult
phenomena such as the trivial satisfaction of universal restriction2 in OWL; how-
ever, the weights of these components are often low and are chosen intuitively.
Therefore, this model predicts the difficulty of a justification in a manner that
is biassed towards its structural complexity rather than its cognitive difficulty.

An empirical study was conducted by the model’s authors to evaluate how well
it predicts the difficulty of justifications. In this study, they created a deduction
problem, presented in Manchester OWL Syntax [4] with alpha-numeric charac-
ters as class and property names, for testing a justification. In each problem, a
justification and its entailment were given and subjects were asked whether the
justification implied the entailment. A weakness of this study was that response
bias was not controlled—i.e., if subjects had a positive response bias then they
would have answered most questions correctly. Additionally, this study tested
the model based on analysis of subjective understanding only.

2 That is, if 〈x, y〉 /∈ RI for all y ∈ ΔI then x ∈ (∀R.C)I .
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The above-mentioned complexity model and evaluation study were, in fact,
inspired by those of Newstead et al. [11], which were proposed for measuring the
difficulty of “Analytical Reasoning” (AR) problems in Graduate Record Exami-
nation (GRE) tests. An AR problem is a deductive reasoning problem in which
an initial scenario is given along with a number of constraints called rules, and
the examinee is asked to determine a possible solution for the problem among
five choices. Like Horridge et al., Newstead et al. identified a set of difficulty
factors and their weights through an intensive pilot study, and they built a pre-
liminary difficulty model based on these factors and weights. After that, a series
of large-scale studies was conducted to validate as well as adjust the model.
Leaving aside the fact that these reasoning problems are different from OWL
inferences, a strength of this work was that response bias of all types was suc-
cessfully controlled. However, in both Newstead et al.’s and Horridge et al.’s
work there was no clear explanation of how weights were assigned, suggesting
that the choice might have been based partly on intuition.

3 An Understandability Model

This section describes our model for predicting the understandability of an OWL
inference. Of course there is no fixed understandability for a given OWL infer-
ence as it depends on the readers’ knowledge of OWL as well as their deductive
reasoning ability. For this reason, it is impossible to provide an accurate mea-
surement of the understandability of an inference that is correct for most people.
However, what we expect from this model is the ability to detect the difference
in the understandability between any two inferences. For example, if an inference
is easier than another then we expect that our model will be able to detect it.

In prior work [12], we reported an empirical study for measuring the under-
standability of deduction rules that have been combined to construct proof trees
for OWL justifications. A deduction rule is an inferential step from premises to a
conclusion, which cannot be effectively simplified by introducing substeps (and
hence, intermediate conclusions). Therefore, the understandability of a rule is,
in fact, the understandability of the associated single-step OWL inference.

To measure the understandability of a deduction rule, we devised a deduction
problem in which premises of the rule were given in English, replacing class or
property variables by fictional nouns and verbs so that the reader would not be
biassed by domain knowledge, and the subjects were asked whether the entail-
ment of the rule followed from the premises.3 The correct answer was always
“Follows”. To control for response bias (i.e., favouring a positive, or a nega-
tive, answer to any question), we included easy questions for both “Follows”
and “Does not Follow” as control questions (as opposed to test questions). The
complete discussion of the design of this study can be found in [12].

3 Fictional words are nonsense words selected from various sources, such as Lewis Car-
roll’s Jabberwocky poem (http://en.wikipedia.org/wiki/Jabberwocky), an auto-
matic generator (http://www.soybomb.com/tricks/words/), and so on.

http://en.wikipedia.org/wiki/Jabberwocky
http://www.soybomb.com/tricks/words/
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We used the proportion of correct answers for each test question as an index
of understandability of the associated deduction rule, which we call its facility
index. This index provides our best estimate of the probability that a person will
understand the relevant inference step—i.e., that a person will recognise that the
conclusion follows from the premises. Therefore, it ranges from 0.00 to 1.00, and
the higher this value, obviously, the easier. Values of the FI for 51 rules tested in
this study are shown in Table 4, ordered from high values to low. In this table,
the rules r6, r12, and r17 used in the explanation in Table 1 are relatively easy,
with FIs of 0.93, 0.80, and 0.78. By contrast rule r51, which infers statement (c)
from axiom 1 in the example, is the hardest, with an FI of only 0.04.

To understand a more complex inference consisting of multiple inference steps,
it is essential to be able to understand each individual inference step within it.
Given a proof tree with FIs assigned to each inference step, such as the proof
tree in Figure 1, a natural method of combining indexes would be to multiply
them, so computing the joint probability of all steps being followed—in other
words, the facility index of the proof tree. As before, the higher this value, the
easier the proof tree. According to this model, the understandability of the proof
tree in Figure 1 would be 0.93*0.78*0.80*0.04*0.80 or 0.02, indicating that the
proof tree is very difficult to understand. This prediction is supported by the
claim from the study conducted by Horridge and colleagues that this inference
is very difficult even for OWL experts [5].

4 An Evaluation Study

In this section we report an experiment for evaluating our proposed model.
We focussed on how well the model can detect differences in understandability
between inferences. We adapted the use of bins for grouping inferences having
close FIs from the study of Horridge et al. [3], but used a different experimental
protocol and materials. Moreover, as mentioned in Section 1, both objective and
subjective understanding of the subjects were analysed.4

4.1 Materials

We carried out the study with 15 proof trees collected from our ontology corpus.
Each proof tree was assigned to an understandability bin on the basis of the FI
predicted by our model. For our purpose, a total of five understandability bins
were constructed over the range from 0.00 to 1.00, each with an interval of 0.20.5

The test proof trees were selected so that there would be three for each bin, and
additionally they would cover as many deduction rules as possible. In fact, our
test proof trees included 25 of 51 rules from Table 4. For simplicity we only tested

4 All the materials and results of this study can found at
http://mcs.open.ac.uk/nlg/SWAT/ESWC2013.html.

5 The ranges of the five bins were as follows: (B1) 0.80<x≤1.00, (B2) 0.60<x≤0.80,
(B3) 0.40<x≤0.60, (B4) 0.20<x≤0.40, and (B5) 0≤x≤0.20, respectively. B1 is the
easiest bin and B5 is the hardest bin.

http://mcs.open.ac.uk/nlg/SWAT/ESWC2013.html
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Table 2. The list of tested inferences and their predicted FIs

ID Tested Inference FI ID Tested Inference FI

1.1 EqvCla(C0,C1) 0.96 2.1 ObjPropRng(r0,C1) 0.74
∧ObjPropDom(r0,C0) ∧SymObjProp(r0)
→ObjPropDom(r0,C1) ∧SubClaOf(C1,C0)
(Rules used: r3, r1) →ObjPropDom(r0,C0)

(Rules used: r18, r3)

1.2 SubClaOf(ObjUniOf(C0,C1),C2) 0.90 2.2 SubClaOf(C0,C1) 0.72
∧SubClaOf(C0,C3) ∧SubClaOf(C1,C2)
→SubClaOf(C0,ObjIntOf(C2,C3)) ∧ObjPropRng(r0,C0)
(Rules used: r4, r5) →ObjPropRng(r0,C2)

(Rules used: r12, r8)

1.3 SubClaOf(C0,ObjIntOf(C1,C2)) 0.86 2.3 EqvCla(C1,ObjUniOf(C2,C3)) 0.66
∧ObjPropRng(r0,C0) ∧SubClaOf(C0,C2)
→ObjPropRng(r0,C1) →SubClaOf(C0,C1)
(Rules used: r2, r8) (Rules used: r10, r12)

3.1 SubClaOf(ObjCompOf(C1),C2) 0.53 4.1 ObjPropRng(r0,C1) 0.34
∧SubClaOf(C1,C0) ∧InvObjProp(r1,r0)
∧SubClaOf(C2,C0) ∧SubClaOf(C0,ObjSomValF(r1,C2))
→SubClaOf(�,C0) →SubClaOf(C0,C1)
(Rules used: r25, r24) (Rules used: r44, r9)

3.2 SubObjPpOf(r0,r1) 0.48 4.2 SubClaOf(C0,ObjSomValF(r0,C2)) 0.32
∧SubObjPpOf(r1,r2) ∧ObjPropRng(r0,C1)
∧ObjPropDom(r2,C0) ∧DisCla(C1,C2)
→ObjPropDom(r0,C0) →SubClaOf(C0,⊥)
(Rules used: r14, r33) (Rules used: r30, r40)

3.3 SubClaOf(C0,ObjMinCard(1,r1,C2)) 0.45 4.3 SubClaOf(C2,ObjAllValF(r0,C1)) 0.26
∧SubObjPpOf(r1,r0) ∧InvObjProp(r0,r1)
∧SubClaOf(ObjSomValF(r0,C2),C1) ∧SubClaOf(C0,ObjSomValF(r1,C2))
→SubClaOf(C0,C1) →SubClaOf(C0,C1)
(Rules used: r37, r11) (Rules used: r48, r12)

5.1 FunDataProp(d0) 0.18
∧SubClaOf(C0,DataHasVal(d0,l0�DT0))
∧SubClaOf(C0,DataHasVal(d0,l1�DT0)), l1�=l0
∧SubClaOf(C1,ObjMinCard(2,r0,C0))
→SubClassOf(C1,⊥)
(Rules used: r45, r42)

5.2 SubClaOf(C1,ObjSomValF(r0,DataHasVal(d0,l0�DT0))) 0.09
∧DataPropRng(d0,DT1), D0 and DT1 are disjoint
∧SubClaOf(C0,ObjSomValF(r1,C1))
→SubClassOf(C0,⊥)
(Rules used: r49, r42)

5.3 EqvCla(C0,ObjAllValF(r0,C1)) 0.03
∧ObjPropDom(r0,C0)
→SubClaOf(�,C0)
(Rules used: r51, r17)

proof trees consisting of exactly two deduction rules (i.e., two-step inferences).
The list of tested inferences and their predicted FIs is shown in Table 2.

For each proof tree, we devised a test problem in which the proof tree was given
to the subjects in the form of a simple explanation in English, and the subjects
were asked whether the explanation is correct. We also asked the subject to rank
how difficult they found the question on a scale from 5 (very easy) to 1 (very
difficult). When presenting the test proof trees, we used fictional nouns and verbs
so that the reader would not be biassed by domain knowledge, and labels such
as (a), (b), and so on, to help subjects in locating the statements quicker. Since
the correct answers to all test questions were “Yes”, we controlled for response
bias (i.e., favouring either positive or negative answers) by including a number
of control problems as well as test problems. An example test problem in our
study is shown in Figure 2.

Our control problems were designed to be similar to our test problems but
were obvious to subjects who did the test seriously (rather than responding ca-
sually without reading the problem properly). We created two types of control
problems: non-entailment and trivial problems. In a non-entailment problem the
test proof tree includes a lemma or a conclusion about an object, a relation-
ship, or both, that are not mentioned in the premises. The correct answer for
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Fig. 2. A test problem in which the FI of the proof tree is 0.03 (0.04 * 0.78)

non-entailment problems is “No”, trivially. In order to create such problems, we
examined three possibilities for which the entailment is invalid:

1. First inference step is invalid, second inference step is valid
2. First inference step is valid, second inference step is invalid
3. Both inference steps are invalid

Among the three above-mentioned cases, one would expect fewer mistakes for the
third case since they had two opportunities to detect a mistake in the reasoning.
Therefore, in this study we used either the first or the second case. In both
of these cases, we could not introduce unrelated objects into a premise as this
violated the assumption of a test problem that all given premises were true;
therefore, we only introduced new objects into the lemma in the first case or the
entailment in the second case.

A trivial problem was one in which the test proof tree included only obviously
correct inferences, so the correct answer was, also trivially, “Yes”. Making trivial
problems was quite tricky in this study as we could not merely use repetitions
of premises, as we did in the previous study [12]. This is because people might
get confused about whether a statement explained an entailment if it merely
repeated the entailment. Since people usually reason better with individuals than
with general statements, we used inferences with individuals in trivial problems.

As mentioned before, there were 15 test problems for which the correct answers
were always positive. For balancing, we created 15 additional control problems,
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five of which having positive answers and the remaining problems having negative
answers. This resulted in 20 positive and 10 negative problems—i.e., 67% positive
vs. 33% negative.

4.2 Method

The study was conducted on CrowdFlower, a crowdsourcing service that allows
customers to upload tasks to be passed to labour channel partners such as Ama-
zon Mechanical Turk6. We set up the operation so that tasks were channelled
only to Amazon Mechanical Turk, and were restricted to subjects from Australia,
the United Kingdom and the United States since we were aiming to recruit as
many (self-reported) native speakers of English as possible.

To eliminate responses from ‘scammers’ (people who respond casually with-
out considering the problem seriously), we used CrowdFlower’s quality control
service which is based on gold-standard data: we provided problems called gold
units for which the correct answer is specified, allowing CrowdFlower to filter au-
tomatically any subjects whose performance on gold units falls below a threshold
(75%). In our study, we selected five of our of fifteen control problems as gold
units. The management of these gold units was internal to CrowdFlower, and
the order for which these gold units would be presented varied randomly on sub-
jects. As in our previous study, the control problems were used only in checking
response biases and were not be counted in our main analysis.

It is important to note that in CrowdFlower subjects are not required to com-
plete all problems. They can give up whenever they want, and their responses
will be accepted so long as they perform well on gold units. CrowdFlower ran-
domly assigns non-gold problems to subjects until it collects up to a specified
number of valid responses for each problem. In our study we specified 80. How-
ever, since we were only interested in responses in which all 30 problems were
answered, we selected only 59 valid responses.

5 Results

5.1 Control Problems

Figure 3 shows that for the 59 participants, there are 7 who answered fewer than
70% of the control questions correctly, suggesting that they were not performing
the test seriously; their results were accordingly discarded. Of the 52 subjects
remaining, only one claimed familiarity with OWL, 45 reported no familiarity,
and the others did not specify (this question was optional).

5.2 Response Bias

Table 3 shows the absolute frequencies of the subjects’ responses “Yes” (+Y)
and “No” (−Y) for all problems in the study—both control and test. It also sub-
divides these frequencies according to whether the response was correct (+C) or

6 http://crowdflower.com/ and http://www.mturk.com/

http://crowdflower.com/
http://www.mturk.com/
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Fig. 3. The subjects’ performance on the control problems sorted decreasingly

Table 3. The distribution of the subjects’ responses—“Yes” (+Y) and “No” (−Y)—
according to their correctness—“Correct” (+C) and “Incorrect” (−C)

+Y −Y TOTAL

+C 774 458 1232

−C 59 265 324

TOTAL 833 723 1556

incorrect (−C). Thus for instance the cell +Y+C counts cases in which subjects
answered “Yes” when this was the correct answer, while +Y−C counts cases in
which they answered “Yes” when this was incorrect.

Recall that for 67% of the problems the correct answers were “Yes”, and for all
the remaining problems they were “No”. If subjects had a positive response bias
we would expect an overall rate much higher than 67%, but in fact we obtained
833/1556 or 54%, suggesting no positive response bias.

Looking at the distribution of incorrect answers, we can also ask whether sub-
jects erred through being too ready to accept invalid conclusions (+Y−C), or
too willing to reject conclusions that were in reality valid (−Y−C). The table
shows a clear tendency towards the latter, with 265 responses in −Y−C com-
pared with an expected value of 324*723/1556=151 calculated from the overall
frequencies. In other words, subjects were more likely to err by rejecting a valid
conclusion than by accepting an invalid one, a finding confirmed statistically
by the extremely significant association between response (±Y) and correctness
(±C) on a 2×2 chi-square test (χ2=205.3, df=1, p<0.0001).

5.3 Analysis of Objective Understanding

Figure 4 shows the relationship between the predicted FIs and the proportions
of correct answers for tested proof trees. Our analysis indicates a statistically
significant relationship between the two values (r=0.88, p<0.0001) (Pearson’s r
correlation). For most tested proof trees the predicted FIs are lower than the
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actual proportions of correct answers. A possible explanation is that all of the
control questions in this study are two-step inferences whereas those in the pre-
vious study [12] are single-step inferences, and the use of more complex control
questions in this study may have caused us to recruit better subjects than those
of the previous study. However, for detecting differences in understandability of
proof trees, our model works relatively well. Among the 15 tested trees in this
study, there are 105 pairs on which difficulty comparisons can be made; of these,
93 comparisons were ordered in difficulty as predicted (i.e., an accuracy of 89%).

Fig. 4. The predicted FIs vs. the proportions of correct answers

We also tested how well our model can detect differences in understandability
of proof trees by analysing the performance of the subjects by bins. For each
of the 52 subjects, we counted the number of correct answers for the three
questions in each bin, so obtaining a value of 0 to 3 for the associated bin.
After that, we applied a Friedman test on the obtained values, which confirmed
that there were statistically significant differences in performance between the
five bins (χ2=108.95, df=4, p<0.0001). Follow-up pairwise comparisons using
a Wilcoxon Signed Ranks test showed that there were statistically significant
differences in performance between any bin pair (p<0.05) except between bins 2
and 3. (This could be because subjects found questions 3.1 and 3.3 easier than
expected, thus reducing the difference between bins 2 and 3.)

It is also clear from Figure 4 that there are exceptional cases for which the
subjects performed much better than we expected, such as proof trees 4.3, 4.1,
3.3, and 3.2. The changes of verbalisations used in this study may be the main
reason for these exceptions. Proof trees 4.1 and 4.3 are the only two cases which
include an InverseObjectProperties(r1,r0) axiom. In the previous study [12], we
used the verbalisation “X r0 Y if and only if Y r1 X” to present this axiom
in rules 44 and 48 (in Table 4). The FIs we measured for these rules when
using this verbalisation are 0.40 and 0.32 respectively. In this study, we used the
verbalisation ““X r0 Y” means the same as “Y r1 X””, which is less technical
than the former, for testing trees 4.1 and 4.3; this might explain why participants
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performed better on these trees than we expected. The proportions of correct
answers for trees 4.1 and 4.3 are 0.67 and 0.73.

Similarly, proof trees 3.2 and 3.3 are the only two cases which include SubOb-

jectPropertyOf(r1,r0) axioms. In our previous study [12], we used the verbalisation
“The property r1 is a sub-property of r0” to present this axiom in rules 33 and 37
(in Table 4). The FIs we measured for these rules when using this verbalisation
are 0.61 and 0.55. In the present study, we used the less technical verbalisation
“If X r1 Y then X r0 Y”, which might again explain why performance on these
trees was better than expected. The proportions of correct answers for trees 3.2
and 3.3 are 0.63 and 0.75.

5.4 Analysis of Subjective Understanding

Figure 5 plots the predicted FIs for test problems against the mean difficulty
ratings (ranging from 1, very difficult, to 5, very easy) reported by subjects. The
correlation between FIs and difficulty ratings is high (r=0.85) and significant
(p<0.0001) (Pearson’s r correlation).

Fig. 5. The predicted FIs vs. the mean subjective difficulty ratings

As in the analysis of objective understanding, we tested how our model can
detect differences in understandability of proof trees by analysing difficulty rank-
ings by bins. For each of the 52 subjects, we computed the mean value of difficulty
rankings for the three questions of each bin, and so obtained a value of 0 to 5
for the associated bin. After that, we applied a Friedman test on the obtained
values, which confirmed that there were statistically significant differences in
difficulty ranking between the five bins (χ2=88.66, df=4, p<0.0001). Follow-up
pairwise comparisons using a Wilcoxon Signed Ranks test showed that there
were statistically significant differences in difficulty ranking between any bin
pair (p<0.05) except between bins 3 and 4, for which the results might have
been affected (as explained in section 5.3) by the more accessible verbalisations
used in the present study for the proof trees 3.2, 3.3, 4.1, and 4.3. Proof tree 5.3
is an exception as it was ranked as easier than 5.2 while our model predicted
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Table 4. Deduction rules and their facility indexes (FI). For short, the names of OWL
functors are abbreviated.

ID Rule FI ID Rule FI

1 EqvCla(X,Y. . . ) 1.00 2 SubClaOf(X,ObjIntOf(Y,Z. . . )) 0.96
→SubClaOf(X,Y) →SubClaOf(X,Y)

3 ObjPropDom(r0,X) 0.96 4 SubClaOf(ObjUniOf(X,Y. . . ),Z) 0.96
∧ SubClaOf(X,Y) →SubClaOf(X,Z)
→ObjPropDom(r0,Y)

5 SubClaOf(X,Y) 0.94 6 SubClaOf(�,Y) 0.93
∧ SubClaOf(X,Z) →SubClaOf(X,Y)
→SubClaOf(X,ObjIntOf(Y,Z))

7 SubClaOf(X,ObjSomValF(r0,�)) 0.90 8 ObjPropRng(r0,X) 0.90
∧ SubClaOf(X,ObjAllValF(r0,Y)) ∧ SubClaOf(X,Y)
→SubClaOf(X,ObjSomValF(r0,Y)) →ObjPropRng(r0,Y)

9 ObjPropDom(r0,Y) 0.86 10 EqvCla(X,ObjUniOf(Y,Z. . . )) 0.82
∧ SubClaOf(X,ObjSomValF(r0,Z)) →SubClaOf(Y,X)
→SubClaOf(X,Y)

11 SubClaOf(X,ObjSomValF(r0,Y)) 0.82 12 SubClaOf(X,Y) 0.80
∧ SubClaOf(ObjMinCard(1,r0,Y),Z)) ∧ SubClaOf(Y,Z)
→SubClaOf(X,Z) →SubClaOf(X,Z)

13 SubClaOf(X,ObjCompOf(X)) 0.80 14 SubObjPpOf(r0,r1) 0.79
→SubClaOf(X,⊥) ∧ SubObjPpOf(r1,r2)

→SubObjPpOf(r0,r2)

15 SubClaOf(X,ObjSomValF(r0,Y)) 0.79 16 EqvCla(X,ObjIntOf(Y,Z. . . )) 0.79
∧ SubClaOf(Y,Z) →SubClaOf(X,Y)
→SubClaOf(X,ObjSomValF(r0,Z))

17 ObjPropDom(r0,X) 0.78 18 ObjPropRng(r0,X) 0.77
∧ SubClaOf(ObjAllValF(r0,⊥),X) ∧ SymObjProp(r0)
→SubClaOf(�,X) →ObjPropDom(r0,X)

19 SubClaOf(Y,X) 0.77 20 ObjPropDom(r0,⊥) 0.76
∧ SubClaOf(ObjCompOf(Y),X) →SubClaOf(�,ObjAllValF(r0,⊥))
→SubClaOf(�,X)

21 ObjPropRng(r0,⊥) 0.76 22 DisCla(X,Y. . . ) 0.76
→SubClaOf(�,ObjAllValF(r0,⊥)) ∧ SubClaOf(Z,X)

∧ SubClaOf(W,Y)
→DisCla(Z,W)

23 SubClaOf(X,ObjSomValF(r0,Y)) 0.75 24 SubClaOf(X,ObjUniOf(Y,Z)) 0.73
∧ SubClaOf(Y,ObjSomValF(r0,Z)) ∧ SubClaOf(Y,W)
∧ TrnObjProp(r0) ∧ SubClaOf(Z,W)
→SubClaOf(X,ObjSomValF(r0,Z)) →SubClaOf(X,W)

25 SubClaOf(ObjCompOf(X),Y) 0.72 26 SubClaOf(X,ObjUniOf(Y,Z)) 0.71
→SubClaOf(�,ObjUniOf(X,Y)) ∧ SubClaOf(Y,Z)

→SubClaOf(X,Z)

27 SubClaOf(ObjSomValF(r0,X),Y) 0.71 28 ObjPropDom(r0,X) 0.69
∧ SubClaOf(ObjAllValF(r0,⊥),Y) ∧ SymObjProp(r0)
→SubClaOf(ObjAllValF(r0,X),Y) →ObjPropRng(r0,X)

29 SubClaOf(X,ObjSomValF(r0,ObjSomValF(r0,Y))) 0.68 30 ObjPropRng(r0,Z) 0.64
∧ TrnObjProp(r0) ∧ SubClaOf(X,ObjSomValF(r0,Y))
→SubClaOf(X,ObjSomValF(r0,Y)) →SubClaOf(X,ObjSomValF(r0,ObjIntOf(Y,Z)))

31 SubClaOf(�,Y) 0.64 32 SubClaOf(X,ObjExtCard(n1,r0,Y)) 0.63
∧ DisCla(X,Y) →SubClaOf(X,ObjMinCard(n2,r0,Y)), 0<n2≤n1
→SubClaOf(X,⊥)

33 ObjPropDom(r0,X) 0.61 34 SubClaOf(X,Y) 0.57
∧ SubObjPpOf(r1,r0) ∧ DisCla(X,Y)
→ObjPropDom(r1,X) →SubClaOf(X,⊥)

35 SubClaOf(X,Y) 0.56 36 TrnObjProp(r0) 0.55
∧ SubClaOf(X,Z) ∧ InvObjProp(r0,r1)
∧ DisCla(Y,Z) →TrnObjProp(r1)
→SubClaOf(X,⊥)

37 SubClaOf(X,ObjSomValF(r0,Y)) 0.55 38 ObjPropRng(r0,X) 0.52
∧ SubObjPropOf(r0,r1) ∧ SubObjPropOf(r1,r0)
→SubClaOf(X,ObjSomValF(r1,Y)) →ObjPropRng(r1,X)

39 SubClaOf(X,Y) 0.51 40 SubClaOf(X,ObjSomValF(r0,ObjIntOf(Y,Z. . . ))) 0.50
∧ SubClaOf(X,ObjCompOf(Y)) ∧ DisCla(Y,Z)
→SubClaOf(X,⊥) →SubClaOf(X,⊥)

41 SubClaOf(X,ObjMinCard(n1,r0,Dor�)) 0.48 42 SubClaOf(X,ObjSomValF(r0,Y)) 0.45
∧ SubClaOf(X,ObjMaxCard(n2,r0,�)), 0<n2<n1 ∧ SubClaOf(Y,⊥)
→SubClaOf(X,⊥) →SubClaOf(X,⊥)

43 FuncDatProp(d0) 0.41 44 ObjPropRng(r0,X) 0.40
∧ SubClaOf(X,DatMinCard(n,d0,DR0)), n>1 ∧ InvObjProp(r0,r1)
→SubClaOf(X,⊥) →ObjPropDom(r1,X)

45 FuncDatProp(d0) 0.40 46 FuncObjProp(r0) 0.39
∧ SubClaOf(X,DatHasVal(d0,l0�DT0)) ∧ SubClaOf(X,ObjHasVal(r0,i0))
∧ SubClaOf(X,DatHasVal(d0,l1�DT1)) ∧ SubClaOf(X,ObjHasVal(r0,i1))
where DT0 and DT1 are disjoint or l0 �= l1 ∧ DiffInd(i0,i1. . . )
→SubClaOf(X,⊥) →SubClaOf(X,⊥)

47 ObjPropDom(r0,X) 0.38 48 SubClaOf(X,ObjAllValF(r0,Y) 0.32
∧ InvObjProp(r0,r1) ∧ InvObjProp(r0,r1)
→ObjPropRng(r1,X) →SubClaOf(ObjSomValF(r1,X),Y)

49 DatPropRng(d0,DR0) 0.19 50 DatPropRng(d0,DR0) 0.18
∧ X�ObjSomValF(r0,DatHasVal(d0,l0�DT1)) ∧ SubClaOf(X,DatSomeValFrm(d0,DR1))
where DR0 & DT1 are disjoint where DR0 & DR1 are disjoint
→SubClaOf(X,⊥) →SubClaOf(X,⊥)

51 EqvCla(X,ObjAllValF(r0,Y)) 0.04
→SubClaOf(ObjAllValF(r0,⊥),X)
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the opposite direction. Our prediction was supported by the analysis of objective
understanding presented previously. This result suggests a failure in understand-
ing this proof tree—that is, the subjects thought that they had understood the
inference correctly but actually they had not.

6 Conclusions and Future Work

This paper describes a method for predicting the understandability of OWL
inferences, focussing on people with limited knowledge of OWL. We present a
probabilistic model for measuring the understandability of a multiple-step infer-
ence based on measurement of the understandability of single-step inferences.
First the FIs of 51 single-step inferences were measured in an empirical study
resulting in estimates of the probability that a person will understand the in-
ference. Then by multiplying the FIs of individual inference steps, we can com-
pute the joint probability of all steps being followed as the FI of the associated
multiple-step inference. We also report an evaluation study which confirms that
our model works relatively well for two-step inferences in OWL. This model
has been applied in our research on generating accessible explanations for en-
tailments derived from OWL ontologies, to determine the most understandable
among alternative inferences from a justification, as well as to sort explanations
in order of decreasing understandability when multiple justifications are found.7

The proposed model grounds FIs in a well-established probabilistic interpre-
tation. This gives us confidence that the good performance of the model on
two-step inferences will extend to n-step inferences for n>2. This has, however,
to be balanced with the somewhat better performance of the theoretically less
well-founded approach of taking the minimum, which for two-step inferences
achieves an accuracy of 94%. Further work is needed to compare these models
for inferences with more than two steps.

In addition to improving the understandability model, we will aim to make our
explanations for absurd entailments more focused; for instance, by tracing from
the entailment in Table 1 to a sequence of absurd lemmas, including “Everything
is a movie”, “Everything that has no rating at all is a movie”, and “Everything
that has no rating at all is a good movie”, and finally reaching the misused axiom
“A good movie is anything that has as ratings only four stars”. Leaving aside
the way the proposed model was used in our work, we believe it can be used by
others to predict the understandability of different kinds of inferences, and so is
worth reporting as a resource for other researchers.
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7 We have implemented a prototype of this model as a plug-in of the SWAT ontology
editing tool, which will be published soon at http://mcs.open.ac.uk/nlg/SWAT/ .
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