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Abstract. We introduce a fully automatic system, implemented in the
Lean theorem prover, that solves equality problems of everyday mathe-
matics. Our overriding priority in devising the system is that it should
construct proofs of equality in a way that is similar to that of humans. A
second goal is that the methods it uses should be domain independent.
The basic strategy of the system is to operate with a subtask stack: when-
ever there is no clear way of making progress towards the task at the top
of the stack, the program finds a promising subtask, such as rewriting
a subterm, and places that at the top of the stack instead. Heuristics
guide the choice of promising subtasks and the rewriting process. This
makes proofs more human-like by breaking the problem into tasks in the
way that a human would. We show that our system can prove equality
theorems simply, without having to preselect or orient rewrite rules as
in standard theorem provers, and without having to invoke heavy duty
tools for performing simple reasoning.

1 Introduction

In mathematical proofs one often finds chains of expressions linked by equalities.
They are designed to show that the first expression in the chain is equal to the
last one, with all the equalities being sufficiently obvious to the reader that no
further justification is needed. For example, suppose that one wishes to prove
that given a linear map A, its adjoint A† is linear. To do so one typically provides
the following equality chain for all vectors x and all dual vectors u, v:

〈A†(u + v), x〉 = 〈u + v,Ax〉 = 〈u,Ax〉+ 〈v,Ax〉 =

〈A†u, x〉+ 〈v,Ax〉 = 〈A†u, x〉+ 〈A†v, x〉 = 〈A†u + A†v, x〉 (1)

Here, 〈·, ·〉 is the inner product taking a dual vector and a vector to a real
number. The equations that we can compose our reasoning chain from (e.g.,
〈A†a, b〉 = 〈a,Ab〉) are called rewrite rules.

A central part of automated theorem proving (ATP) is constructing such
equality proofs automatically. This can be done with well-researched techniques
from the field of term rewriting systems [1]. These techniques take advantage
of the fact that computers can perform many operations per second, and large
search spaces can be explored quickly, though heuristic functions are still needed
to prevent a combinatorial explosion. Many domains – such as checking that
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two expressions are equal using the ring axioms – also have specialised decision
procedures available for them. We will call these approaches to solving equalities
machine-oriented.

We wish to investigate alternative ways of producing equality proofs. We do
not wish to compete with machine-oriented techniques to prove more theorems
or prove them faster. Instead, we are motivated by a desire to prove theorems
in a different way which better captures the abstract reasoning that seems to
occur in the mind of a human.

Why bother finding proofs that are more human-oriented? One answer is
purely about efficiency: the runtimes of existing ATP methods do not scale
well with the number of competing rules introduced, as one would expect of
algorithms that make use of significant amounts of brute-force search. If we can
devise new architectures that solve simple equalities with less search, then it
may be possible to scale up these techniques to larger problems and improve the
efficiency of established ATP methods.

Another reason is that it makes interactive theorem proving easier for the
non-specialist. While there is a growing community of mathematicians using
formal verification techniques, ATP is met with indifference by the majority of
mathematicians [6]. A large part of the reason for this is that the user who wishes
to prove a lemma in a proof assistant often has to explicitly provide proofs of
intermediate results that would be omitted in a mathematical document. Tools
such as Isabelle’s Sledgehammer [3] have ameliorated the problem to a large ex-
tent, but finding proofs can be slow and the resulting tactics that Sledgehammer
recommends are still somewhat cryptic and add clutter. By developing automa-
tion that can solve problems that mathematicians find easy, we can contribute
to the goal of producing verified proofs that are as easy to read and write as
informal ones.

With this in mind, our goals are to create an algorithm which:

– can solve simple equality problems of the kind that an undergraduate might
find easy;

– does not encode any domain-specific knowledge of mathematics, that is, it
does not invoke specialised procedures if it detects that the problem lies in
a particular domain such as Presburger arithmetic;

– is efficient in the sense that it does not store a large state and does not
perform a significant search when a human would not.

In this paper we present the subtask algorithm which has some success
with respect to the above goals. The algorithm is written in Lean 3 [12] and
can be found at https://github.com/EdAyers/lean-subtask. In the remainder of
the paper we give a motivating example in § 2 followed by a description of the
algorithm in § 3. The algorithm is then contrasted with existing approaches in
§ 4 and evaluated against the above goals in § 5. Conclusions and further work
are contemplated in § 6.

https://github.com/EdAyers/lean-subtask
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2 Example

Let us begin with the example in elementary linear algebra mentioned above.
We have to prove the equality 〈A†(u + v), x〉 = 〈A†u + A†v, x〉.

To do this, a human’s (not fully conscious) thought process might proceed
as follows.

1. I need to create the expression 〈A†u + A†v, x〉.
2. In particular, I need to make the subexpressions A†u and A†v.
3. The only sensible way I can get these is to use the definition 〈w,Az〉 =
〈A†w, z〉 applied with w = u and v, and presumably with z = x.

4. In particular, I’ll need to make the subterm Az for some z.
5. I can do that straight away: 〈A†(u + v), x〉 = 〈u + v,Ax〉.
6. Now I’m in a position to obtain the subexpressions 〈u,Ax〉 and 〈v,Ax〉 I

wanted in step 3, so let me do that using bilinearity: 〈u+ v,Ax〉 = 〈u,Ax〉+
〈v,Ax〉.

7. And now I can get the subexpressions A†u and A†v I wanted even earlier in
step 2, so let me do that: 〈u,Ax〉+ 〈v,Ax〉 = 〈A†u, x〉+ 〈A†v, x〉.

8. And with one application of bilinearity I’m home: 〈A†u, x〉 + 〈A†v, x〉 =
〈A†u + A†v, x〉.

The key aspect of the above kind of thought process that we wish to model is
the setting of intermediate aims, such as obtaining certain subexpressions when
we do not immediately see how to obtain the entire expression. We do this by
creating a tree of subtasks.

1 CreateAll(〈A†u + A†v, x〉)

2 Create(A†u)

3 , 7

Use (〈u,Az〉 = 〈A†u, z〉)

4 Create(Az)

5 Use(〈A†(u + v), x〉
= 〈u + v,Ax〉)

6 Use(〈u + v,Ax〉
= 〈u,Ax〉+ 〈v,Ax〉)

2 Create(A†v)

3 , 7

Use (〈v,Ax〉 = 〈A†v, x〉)

8 Use(〈A†u, x〉+ 〈A†v, x〉
= 〈A†u + A†v, x〉)

Fig. 1: The subtask tree for solving 〈A†(u + v), x〉 = 〈A†u + A†v, x〉. Circled
numbers correspond to steps in the above list.



4 Edward W. Ayers, W.T. Gowers, and Mateja Jamnik

The tree in Figure 1 represents what the algorithm does with the additivity-
of-adjoint problem. It starts with the subtask CreateAll(〈A†u+A†v, x〉). Since
it cannot achieve that in one go, it creates some subtasks and then chooses the
one that is most promising: later in § 3.1 we shall give details about how it gen-
erates and evaluates possible choices. In this case the most promising subtask is
Create(A†u), so it selects that and identifies a rewrite rule – the basic definition
of adjoint – that can achieve it. The z that appears is a metavariable that will in
due course be set to x. (It will typically also find a number of ‘silly’ possibilities,
not depicted here, which are dismissed by the scoring system.) When it has done
that, it has a new subtask which is to create the left-hand side of the rule. It
cannot do that in one go, so it creates new subtasks and so on. The process
outlined in this example is the one which we want our algorithm to reflect.

3 Design of the algorithm

The subtask algorithm acts on a tree of tasks (as depicted in Figure 1) and
an expression called the current expression (CE). A task is any object which
implements the following methods:

– refine : task -> list task

– test : task -> bool which returns true when the task is achieved for the
current expression.

– optionally, execute : task -> unit which updates the current expression
x to y by providing a proof of x = y. Tasks with execute methods are
called strategies. In this case, test returns true when execute can be applied
successfully.

The main tasks are given in Table 1, however more are added to the software. For
example ReduceDistance(x, y) will greedily apply any rewrite that causes x and
y to be closer in the parse tree. The algorithm is summarised in the pseudocode
in Figure 2.

In the explore phase, we take a task X on the tree and refine it to produce
a list of child tasks C1, C2 · · ·. We add these to the task tree if they are not
already present on it. We then score the strategies S1, S2 · · · in this list – that is,
score the children where execute is defined. The score is intended to represent
the likelihood of the strategy being successful and is determined by heuristics
discussed in § 3.1. The reason why the algorithm focusses on strategies before
non-strategies is a heuristic that seems to work well in practice. The underlying
idea behind the heuristic is that often the first sensible strategy found is enough
of a signpost to solve simple problems. That is, once one has found one plausible
strategy of solving a simple problem it is often fruitful to stop looking for other
strategies which achieve the same thing and to get on with finding a way of
performing the new strategy.

If the overall score is above zero then add a backtrack point and take the
highest-scoring strategy S.
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refine test execute

CreateAll(e) Returns a list of
Create(b) subtasks
where each b is a
minimal subterm of
e not present in the
CE.

True whenever the
CE is e.

none

Create(e) Returns a list Use(a

= b) subtasks where
each e occurs within
a.

True whenever the
CE contains e.

none

Use(a = b) Returns a list of
Create(e) subtasks
where each e is a
minimal subterm of
a not present in the
CE.

True whenever the
rule a = b can be ap-
plied to the CE.

Apply a = b to the
CE.

Table 1: Main tasks

function explore(X : task) {

children <- refine(X)

foreach (C in children) {

if (C is not on the task tree) {

add C as a child node of X

}

}

strategies <- children.strategies

overall_score <- score(strategies)

if (overall_score > 0) {

add a backtrack point

S <- strategies.highest_scoring

ascend(S)

} else {

explore a non-strategy

child of X or else backtrack

}

}

function ascend(X : task) {

if (X is a strategy) {

if (test(X)) {

execute(X)

ascend(parent(X))

} else {

explore(X)

}

} else {

if (test(X)) {

if (X is the root task) {

success

} else {

ascend(parent(X))

}

} else {

explore(X)

}

}

}

Fig. 2: Pseudocode for the subtask algorithm.

If test(S) is false then explore S otherwise execute S and ascend S’s parents
until a task Y is found that can not be achieved then explore Y . Otherwise
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if the overall score is less than or equal to zero then explore a non-strategy
child task of X or backtrack if none exist. The backtracking procedure works
by taking the list of backtracking points and choosing the one with the highest
overall score if the failed branch is removed.

To find l = r, the algorithm is initialised with the tree CreateAll(r) and
the current expression l. We then run execute(CreateAll(r)) until a timeout
is reached or we run out of backtracking points.

3.1 Heuristics

Both lists of strategies and individual strategies are scored using a heuristic to
guide the exploration of the tree. The system prioritises strategies if they:

– achieve a task higher in the task tree;
– achieve a task on a different branch of the task tree;
– have a high degree of term overlap with the current expression (this is mea-

sured using symbol counting and finding largest common subterms);
– use local hypotheses;
– can be achieved in one rewrite step from the current expression.

The overall score heuristic evaluates sets of strategies. If there is only one
strategy then it scores 10. If there are multiple strategies, it discards any scoring
less than -5. If there are positive-scoring strategies then all negative-scoring
strategies are discarded. The overall score is then set to be 5 minus the number
of strategies in the list. The intention of this simple procedure is that we should
prefer smaller sets of strategies, even if their scores are bad because it limits
choice in what to do next.

4 Related work

4.1 Term rewriting

One way to find equality proofs is to perform a graph search using a heuris-
tic. This is the approach of the rewrite-search algorithm [8], which uses the
heuristic of string edit-distance between the strings two pretty-printed expres-
sions. The rewrite-search algorithm does capture some human-like properties
in the heuristic, since the pretty printed expressions are intended for human
consumption. Our algorithm is different from rewrite-search in that we guide
search according to achieving sequences of tasks. Since both our software and
rewrite-search are written in Lean, some future work could be to investigate
a combination of both systems.

A term rewriting system (TRS) R is a set of oriented rewrite rules. There
are many techniques available for turning a set of rewrite rules in to procedures
that check whether two terms are equal. One technique is completion, where R
is converted into an equivalent TRS R′ that is convergent. This means that any
two expressions a, b are equal under R if and only if repeated application of rules
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in R′ to a and b will produce the same expression. Finding equivalent convergent
systems, if not by hand, is usually done by finding decreasing orderings on terms
and using Knuth-Bendix completion. When such a system exists, automated
rewriting systems can use these techniques to quickly find proofs, but the proofs
are often overly long and needlessly expand terms.

Another method is rewrite tables, where a lookup table of representatives
for terms is stored in a way that allows for two terms to be matched through a
series of lookups.

Both completion and rewrite tables can be considered machine-oriented be-
cause they rely on large datastructures and systematic applications of rewrite
rules. Such methods are certainly highly useful, but they can hardly be said to
capture the process by which humans reason.

Finally, there are many normalisation and decision procedures for particular
domains, for example on rings [7]. Domain specific procedures do not satisfy our
criterion of generality.

4.2 Proof planning

As mentioned earlier, our approach is similar to that of proof planning [4]. AI
planning in its most general conception [9] is the process of searching a graph
G using plan-space rather than by searching it directly. In a typical planning
system, each point in plan-space is a DAG of objects called ground operators or
methods, each of which has a mapping to paths in G. Each ground operator is
equipped with predicates on the vertices of G called pre/post-conditions. Various
AI planning methods such as GRAPHPLAN [2] can be employed to discover a
partial ordering of these methods, which can then be used to construct a path
in G. This procedure applied to the problem of finding proofs is known as proof
planning. The main issue with proof planning [5] is that it is difficult to identify
sets of conditions and methods that do not cause the plan space to be too large
or disconnected. However, in this paper we are not trying to construct plans for
entire proofs, but just to model the thought processes of humans when solving
simple equalities.

Proof planning in the domain of finding equalities frequently involves a tech-
nique called rippling, in which an expression is annotated with additional struc-
ture determined by the differences between the two sides of the equation that
directs the rewriting process. In our system we avoid using rippling because
of our concern for generality: for finding chains of equalities, subtasks achieve
similar results and are less tied to particular domains.

Our approach also shares properties with Hierarchical Task Networks (HTN)
[11,13] used to drive the behaviour of artificial agents such as the ICARUS
architecture [10]. Starting tasks are broken down into subtasks, which are then
used to find fine-grained methods for achieving the original tasks.

The main difference between our approach and proof planning and hierar-
chical task networks is that our algorithm is greedier: we generate enough of a
plan to have little doubt what the first rewrite rule in the sequence should be,
and no more. We believe that this reflects how humans reason for solving simple
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problems: favouring just enough planning to decide on a good first step, and
then planning further only once the step is completed and new information is
revealed.

5 Evaluation

Our ultimate motivation is to make an algorithm that behaves as a human
mathematician would. We do not wish to claim that we have fully achieved this,
but we can evaluate our algorithm with respect to some general goals that we
mentioned in § 1.

– Scope: can it solve simple equations?
– Generality: does it avoid techniques specific to a particular area of mathe-

matics?
– Reduced search space: does the algorithm avoid search when finding proofs

that humans can find easily without search?
– Straightforwardness of proofs: for easy problems, does it give a proof that

an experienced human mathematician might give?

Our method of evaluation is to use the algorithm implemented as a tactic
in Lean on a library of thirty or so example problems. This is not large enough
for a substantial quantitative comparison with existing methods, but we can
still investigate some properties of the algorithm. The source code also contains
many examples which are outside the abilities of the current implementation of
the algorithm. Some ways to address these issues are discussed in § 6.

Table 2 gives some selected examples. These are all problems that the algo-
rithm can solve with no backtracking.

From this table we can see that the algorithm solves problems from several
different domains. We did not encode any decision procedures for monoids or
rings. In fact we did not even include reasoning under associativity and com-
mutativity, although we are not in principle against extending the algorithm
to do this. The input to the algorithm is simply a list of over 100 axioms and
equations for sets, rings, groups and vector spaces which can be found in the
file equate.lean in the source code. Thus, the algorithm exhibits considerable
generality.

All of the solutions to the above examples are found without backtracking,
which adds support to the claim that our algorithm requires less search. There
are other examples in the source where backtracking occurs, so there is still some
work to be done on choosing scoring heuristics here.

Our final criterion is that the proofs are more straightforward than those
produced by machine-oriented special purpose tactics. This is a somewhat sub-
jective measure but there are some proxies that indicate that subtasks can be
used to generate simpler proofs.

To illustrate this point, consider the problem of proving (x+y)2 +(x+z)2 =
(z +x)2 + (y+x)2 within ring theory. We choose this example because it is easy
for a human to spot how to do it with three uses of commutativity, but it is easy
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problem #steps location

l s : list
rev(l ++s) = rev(s) ++rev(l)
rev(a :: l) = rev(l) ++[a]
` rev(h :: l ++s) = rev(s) ++rev(h :: l)

5 datatypes.lean/rev app rev

a : monoid element

a(m+n) = am ∗ an

` asucc(m)+n = asucc(m) ∗ an

8 groups.lean/my pow add

a b : ring element
a ∗ d = c ∗ b
c ∗ f = e ∗ d
` d ∗ (a ∗ f) = d ∗ (e ∗ b)

9 rat.lean

a b : ring element
` (a + b) ∗ (a + b) = a ∗ a + 2 ∗ (a ∗ b) + b ∗ b 7 rings.lean/sumsq with equate

A B C X : set
` X \ (B ∪ C) = (X \B) \ C 4 sets.lean/example 4

Table 2: subtask’s performance on some example problems. “# steps” gives the
number of rewrite steps in the final proof. “location” gives the file and declaration
name of the example in the source code.

for a program to be led astray by expanding the squares. subtask proves this
equality with 3 uses of commutativity and with no backtracking or expansion
of the squares. This is an example where domain specific tactics do worse than
subtask, the ring tactic for reasoning on problems in commutative rings will
produce a proof by expanding out the squares. The built-in tactics ac refl and
blast in Lean which reason under associativity and commutativity both use
commutativity 5 times. If one is simply interested in verification, then such a
result is perfectly acceptable. However, we are primarily interested in modelling
how humans would solve such an equality, so we want our algorithm not to
perform unnecessary steps such as this.

It is difficult to fairly compare the speed of subtask in the current imple-
mentation because it is compiled to Lean bytecode which is much slower than
native built-in tactics that are written in C++. However it is worth noting that,
even with this handicap, subtask takes 1900ms to find the above proof whereas
ac refl and blast take 600ms and 900ms respectively.

There are still proofs generated by subtask that are not straightforward. For
example, the lemma (xz)(z−1y) = xy in group theory is proved by subtask with
a superfluous use of the rule e = xx−1. We hope that some of these defects will
be ironed out in future versions of the program.
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6 Conclusions and Further Work

In this paper, we introduced a new, task-based approach to finding equalities in
proofs and provided a demonstration of the approach by building the subtask

tactic in Lean. We show that the approach can solve simple equality proofs
with very little search. Our hope is that our work will renew interest in proof
planning and spark interest in human-oriented reasoning for at least some classes
of problems.

In future work, we wish to add more subtasks and better heuristics for scoring
them. The framework we outlined here allows for easy experimentation with such
different sets of heuristics and subtasks. In this way, we also wish to make the
subtask framework extensible by users, so that they may add their own custom
subtasks and scoring functions.

There are times when the algorithm fails and needs guidance from the user.
We wish to study further how the subtask paradigm might be used to enable
more human-friendly interactivity than is currently possible. For example, in real
mathematical textbooks, if an equality step is not obvious, a relevant lemma will
be mentioned. Similarly, we wish to investigate ways of passing ‘hint’ subtasks to
the tactic. For example, when proving x∗y = (x∗z)∗(z−1∗y), the algorithm will
typically get stuck (although it can solve the flipped problem), because there are
too many ways of creating z. However, the user – upon seeing subtask get stuck
– could steer the algorithm with a suggested subtask such as Create(x∗(z∗z−1)).

Using subtasks should help to give better explanations to the user. The idea
of our algorithm is that the first set of strategies in the tree roughly corresponds
to the high-level actions that a human would first consider when trying to solve
the problem. Thus, the algorithm could use the subtask hierarchy to determine
when no further explanation is needed and thereby generate abbreviated proofs
of a kind that might be found in mathematical textbooks.

Another potential area to explore is to perform an evaluation survey where
students are asked to determine whether an equality proof was generated by our
software or a machine.
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