169 research outputs found

    The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PSA (promastigote surface antigen) is one of the major classes of membrane proteins present at the surface of the parasitic protozoan <it>Leishmania</it>. While it harbours leucine rich repeats, which are suggestive of its involvement in parasite-to-host physical interactions, its exact role is largely unknown. Furthermore, the extent of diversity of this gene family, both in copy number and sequence has not been established.</p> <p>Results</p> <p>From the newly available complete genome sequences of <it>L. major</it>, <it>L. infantum </it>and <it>L. braziliensis</it>, we have established the complete list of <it>PSA </it>genes, based on the conservation of specific domain architecture. The latter includes an array of leucine rich repeats of unique signature flanked by conserved cysteine-rich domains. All <it>PSA </it>genes code either for secreted or membrane-anchored surface proteins. Besides the few previously identified <it>PSA </it>genes, which are shown here to be part of a relatively large subclass of <it>PSA </it>genes located on chromosome 12, this study identifies seven other <it>PSA </it>subtypes. The latter, whose genes lie on chromosomes 5, 9, 21 and 31 in all three species, form single gene (two genes in one instance) subfamilies, which phylogenetically cluster as highly related orthologs. On the other hand, genes found on chromosome 12 generally show high diversification, as reflected in greater sequence divergence between species, and in an extended set of divergent paralogs. Moreover, we show that the latter genes are submitted to strong positive selection. We also provide evidence that evolution of these genes is driven by intra- and intergenic recombination, thereby modulating the number of LRRs in protein and generating chimeric genes.</p> <p>Conclusion</p> <p>PSA is a <it>Leishmania </it>family of membrane-bound or secreted proteins, whose main signature consists in a specific LRR sequence. All <it>PSA </it>genes found in the genomes of three sequenced <it>Leishmania </it>species unambiguously distribute into eight subfamilies of orthologs. Seven of these are evolving relatively slowly and could correspond to basic functions related to parasite/host interactions. On the opposite, the other <it>PSA </it>gene class, which include all so far experimentally studied <it>PSA </it>genes, could be involved in more specialised adaptative functions.</p

    DNAGear: a free software for spa type identification in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is both human commensal and an important human pathogen, responsible for community-acquired and nosocomial infections ranging from superficial wound infections to invasive infections, such as osteomyelitis, bacteremia and endocarditis, pneumonia or toxin shock syndrome with a mortality rate up to 40%. S. aureus reveals a high genetic polymorphism and detecting the genotypes is extremely useful to manage and prevent possible outbreaks and to understand the route of infection. One of current and expanded typing method is based on the X region of the spa gene composed of a succession of repeats of 21 to 27 bp. More than 10000 types are known. Extracting the repeats is impossible by hand and needs a dedicated software. Unfortunately the only software on the market is a commercial program from Ridom. Findings This article presents DNAGear, a free and open source software with a user friendly interface written all in Java on top of NetBeans Platform to perform spa typing, detecting new repeats and new spa types and synchronizing automatically the files with the open access database. The installation is easy and the application is platform independent. In fact, the SPA identification is a formal regular expression matching problem and the results are 100% exact. As the program is using Java embedded modules written over string manipulation of well established algorithms, the exactitude of the solution is perfectly established. Conclusions DNAGear is able to identify the types of the S. aureus sequences and detect both new types and repeats. Comparing to manual processing, which is time consuming and error prone, this application saves a lot of time and effort and gives very reliable results. Additionally, the users do not need to prepare the forward-reverse sequences manually, or even by using additional tools. They can simply create them in DNAGear and perform the typing task. In short, researchers who do not have commercial software will benefit a lot from this application.Peer Reviewe

    Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications

    Get PDF
    Background: Leishmania (L.) killicki is responsible for the chronic cutaneous leishmaniasis. The taxonomic status of this parasite is still not well defined. It was suggested on one hand to include this taxon within L. tropica complex but also on the other hand to consider it as a distinct phylogenetic complex. The present work represents the more detailed study on the evolutionary history of L. killicki relative to L. tropica and the taxonomic implications. Methods: Thirty five L. killicki and 25 L. tropica strains isolated from humans and from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. Results: The genetic and phylogenetic analyses strongly support that L. killicki belongs to L. tropica complex. The study suggests the emergence of L. killicki by a funder effect followed by an independent evolution from L. tropica, but does not validate the species status of this taxon. In this context, we suggest to call this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. Conclusions: These findings provided taxonomic and phylogenetic informations on L. killicki and helped to better know the evolutionary history of this taxon

    Molecular Diagnosis of Drug-Resistant Tuberculosis; A Literature Review

    Get PDF
    Drug-resistant tuberculosis is a global health problem that hinders the progress of tuberculosis eradication programs. Accurate and early detection of drug-resistant tuberculosis is essential for effective patient care, for preventing tuberculosis spread, and for limiting the development of drug-resistant strains. Culture-based drug susceptibility tests are the gold standard method for the detection of drug-resistant tuberculosis, but they are time-consuming and technically challenging, especially in low- and middle-income countries. Nowadays, different nucleic acid-based assays that detect gene mutations associated with resistance to drugs used to treat tuberculosis are available. These tests vary in type and number of targets and in sensitivity and specificity. In this review, we will describe the available molecular tests for drug-resistant tuberculosis detection and discuss their advantages and limitations

    Multilocus microsatellite typing of Leishmania infantum isolates in monitored Leishmania/HIV coinfected patients

    Get PDF
    Leishmania infantum is the main etiological agent of both visceral and cutaneous clinical forms of leishmaniasis in the Mediterranean area. Leishmania/HIV coinfection in this area is characterized by a chronic course and frequent recurrences of clinical episodes. The present study using Multilocus Microsatellite Typing (MLMT) analysis, a highly discriminative tool, aimed to genetically characterize L. infantum isolates taken from monitored Leishmania/HIV coinfected patients presenting successive clinical episodes. In this study, by the analysis of 20 microsatellite loci, we studied the MLMT profiles of 25 L. infantum isolates from 8 Leishmania/HIV coinfected patients who had experienced several clinical episodes. Two to seven isolates per patient were taken before and after treatment, during clinical and non-clinical episodes, with time intervals of 6 days to 29 months. Genetic diversity, clustering and phenetic analyses were performed. MLMT enabled us to study the genetic characteristics of the 25 L. infantum isolates, differentiating 18 genotypes, corresponding to a genotypic diversity of 0.72. Fifteen genotypes were unique in the total sample set and only 3 were repeated, 2 of which were detected in different patients. Both clustering and phylogenetic analyses provided insights into the genetic links between the isolates; in five patients isolates showed clear genetic links: either the genotype was exactly the same or only slightly different. In contrast, the isolates of the other three patients were dispersed in different clusters and some could be the result of mixing between populations. Our data indicated a great MLMT variability between isolates from coinfected patients and no predominant genotype was observed. Despite this, almost all clinical episodes could be interpreted as a relapse rather than a reinfection. The results showed that diverse factors like an intrapatient evolution over time or culture bias could influence the parasite population detected in the patient, making it difficult to differentiate between relapse and reinfection

    Sacroiliitis secondary to catheter-related bacteremia due to Mycobacterium abscessus (sensu stricto).

    Get PDF
    International audienceWe describe a case of sacroiliitis secondary to catheter-related bacteremia due to Mycobacterium abscessus (sensu stricto). This case confirms that MultiLocus sequence typing and variable-number tandem-repeat methods are very robust techniques to identify the pathogen species and to validate molecular epidemiological links among complex M. abscessus isolates

    Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients

    Get PDF
    IntroductionIn the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates.MethodsThe profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination.ResultsThe number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the blaKPC-2, blaNDM-5, blaOXA-1, blaOXA-48, and blaOXA-181 β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes.DiscussionOur study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance

    Genomic Epidemiology of SARS-CoV-2 in Western Burkina Faso, West Africa.

    Get PDF
    BACKGROUND: After its initial detection in Wuhan, China, in December 2019, SARS-CoV-2 has spread rapidly, causing successive epidemic waves worldwide. This study aims to provide a genomic epidemiology of SARS-CoV-2 in Burkina Faso. METHODS: Three hundred and seventy-seven SARS-CoV-2 genomes obtained from PCR-positive nasopharyngeal samples (PCR cycle threshold score &lt; 35) collected between 5 May 2020, and 31 January 2022 were analyzed. Genomic sequences were assigned to phylogenetic clades using NextClade and to Pango lineages using pangolin. Phylogenetic and phylogeographic analyses were performed to determine the geographical sources and time of virus introduction in Burkina Faso. RESULTS: The analyzed SARS-CoV-2 genomes can be assigned to 10 phylogenetic clades and 27 Pango lineages already described worldwide. Our analyses revealed the important role of cross-border human mobility in the successive SARS-CoV-2 introductions in Burkina Faso from neighboring countries. CONCLUSIONS: This study provides additional insights into the genomic epidemiology of SARS-CoV-2 in West Africa. It highlights the importance of land travel in the spread of the virus and the need to rapidly implement preventive policies. Regional cross-border collaborations and the adherence of the general population to government policies are key to prevent new epidemic waves

    “Everything You Always Wanted to Know about Sex (but Were Afraid to Ask)” in Leishmania after Two Decades of Laboratory and Field Analyses

    Get PDF
    Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∼20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes
    corecore