338 research outputs found

    The structure of the ophiolitic beltin Albania inferred from geomagnetic anomalies

    Get PDF
    The ground magnetic measurements in Albania were used for the compilation of the Total Magnetic Field (TMF) anomaly map of Albania. The magnetic data were processed and interpreted in order to study the structure of the ophiolitic belts of Albania. The ophiolites of Albania are placed at the Mirdita zone and are divided into two parallel alignments which are called the eastern and western ophiolitic belts. They are associated with strong potential field anomalies and their characteristics are considered crucial for a better understanding of the tectonic settings of Albania. The ground TMF data used in this study were acquired over various campaigns (1990-1994) and cover most of Albania's territory. The data were compiled to a map after reduction to the epoch 1990.4. The strongest magnetic anomalies in Albania appear along the known ophiolitic belts which trend NE-SW to the north and NW-SE to the south. Several processing steps were applied to the unified and gridded data in order to obtain information on the distribution of the magnetic sources. The magnetic sources were subsequently modeled using a 2.5D inversion technique. The magnetic properties of the ophiolites determined from laboratory measurements on rock samples, while their lateral extent was calculated from the processing of the magnetic data and used as constraints to the inversion procedure. The bottom of the ophiolitic belts is considered to be predominated by harzburgites. They exhibit lower magnetization than other rocks of the complex, i.e. gabbros, basalt. In fact gabbros are associated with the observed high frequency magnetic anomalies. The modeling results indicate that the thickness of the ophiolites is reduced from east to west. The eastern ophiolitic belt has a maximum thickness of approximately 12 km at its northern section (Kukesi and Lura massifs). The magnetic sources appear with relatively small thickness at the western ophiolitic belt. Boundaries of the eastern ophiolites are characterized by vertical contacts

    A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands

    Get PDF
    MicroRNAs (miRNAs) are approximately 22-nucleotide RNAs that are processed from characteristic precursor hairpins and pair to sites in messages of protein-coding genes to direct post-transcriptional repression. Here, we report that the miRNA iab-4 locus in the Drosophila Hox cluster is transcribed convergently from both DNA strands, giving rise to two distinct functional miRNAs. Both sense and antisense miRNA products target neighboring Hox genes via highly conserved sites, leading to homeotic transformations when ectopically expressed. We also report sense/antisense miRNAs in mouse and find antisense transcripts close to many miRNAs in both flies and mammals, suggesting that additional sense/antisense pairs exist

    MicroRNAs and Developmental Robustness: A New Layer Is Revealed

    Get PDF
    MicroRNAs provide a new layer of regulation to ensure that a developmental program of programmed cell death yields a reproducible outcome in spite of perturbations to the system

    A geomagnetic reference model for Albania, Southern Italy and the Ionian Sea from 1990 to 2005

    Get PDF
    Taking advantage of the measurements undertaken during the Albanian and Italian magnetic repeat station networks since 1990, as well as of a selected set of Ørsted satellite total field measurements, a magnetic reference model for the region comprising the Albanian territory, the southern part of the Italian Peninsula, and the Ionian Sea is presented. The model, designed to model the components of the main geomagnetic field for epochs between 1990 and 2005, has been developed by means of spherical cap harmonic analysis applied to a cap of semiangle 8°, larger than that investigated to take into account the appropriate spatial wavelength content of the main geomagnetic field over the region. The goodness of the fit to the real data suggests that the model can be used as a reference model to reduce magnetic surveys developed in the area during the time of validity of the model

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Discriminating single-base difference miRNA expressions using microarray Probe Design Guru (ProDeG)

    Get PDF
    MicroRNAs (miRNA) are endogenous tissue-specific short RNAs that regulate gene expression. Discriminating each let-7 family member expression is especially important due to let-7's abundance and connection with development and cancer. However, short lengths (22 nt) and similarities between multiple sequences have prevented identification of individual members. Here, we present ProDeG, a computational algorithm which designs imperfectly matched sequences (previously yielding only noise levels in microarray experiments) for genome-wide microarray “signal” probes to discriminate single nucleotide differences and to improve probe qualities. Our probes for the entire let-7 family are both homogeneous and specific, verified using microarray signals from fluorescent dye-tagged oligonucleotides corresponding to the let-7 family, demonstrating the power of our algorithm. In addition, false let-7c signals from conventional perfectly-matched probes were identified in lymphoblastoid cell-line samples through comparison with our probe-set signals, raising concerns about false let-7 family signals in conventional microarray platform

    Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction

    Get PDF
    OBJECTIVE—Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic β-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation
    corecore