27,124 research outputs found

    Swift-Hohenberg equation with broken reflection symmetry

    Get PDF
    The bistable Swift-Hohenberg equation possesses a variety of time-independent spatially localized solutions organized in the so-called snakes-and-ladders structure. This structure is a consequence of a phenomenon known as homoclinic snaking, and is in turn a consequence of spatial reversibility of the equation. We examine here the consequences of breaking spatial reversibility on the snakes-and-ladders structure. We find that the localized states now drift, and show that the snakes-and-ladders structure breaks up into a stack of isolas. We explore the evolution of this new structure with increasing reversibility breaking and study the dynamics of the system outside of the snaking region using a combination of numerical and analytical techniques

    Results of literature search on dielectric properties and electron interaction phenomena related to spacecraft charging

    Get PDF
    The objective of the literature search was to determine the required material properties and electron interaction parameters needed for modeling charge buildup and breakdown in insulators. A brief overview of the results of the literature search is given. A partial list of the references covered is included in a bibliography. Although inorganic insulators were also considered in the search, coverage is limited to the organics, primarily Kapton and Teflon

    Solar cell radiation response near the interface of different atomic number materials

    Get PDF
    The response of cobalt 60 irradiated N/P silicon solar cells was measured as a function of the atomic number of the medium adjacent to the cell and the direction of the gamma ray beam. The interpositioning of various thicknesses of aluminum between the adjacent material and the cell had the effect of moving the cell to various locations in an approximate monatomic numbered medium. Using this technique the solar cell response was determined at various distances from the interface for gold and beryllium. The results were compared with predictions based upon ionization chamber measurements of dose perturbations in aluminum and found to agree within five percent. Ionization chamber data was then used to estimate the influence of various base contact materials

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure

    First and second simulator evaluations of advanced integrated display and control systems

    Get PDF
    Advanced integrated visual and control systems simulator evaluations for post-Apollo manned spacecraf

    High Voltage CMOS Control Interface for Astronomy - Grade Charged Coupled Devices

    Full text link
    The Pan-STARRS telescope consists of an array of smaller mirrors viewed by a Gigapixel arrays of CCDs. These focal planes employ Orthogonal Transfer CCDs (OTCCDs) to allow on-chip image stabilization. Each OTCCD has advanced logic features that are controlled externally. A CMOS Interface Device for High Voltage has been developed to provide the appropiate voltage signal levels from a readout and control system designated STARGRASP. OTCCD chip output levels range from -3.3V to 16.7V, with two different output drive strenghts required depending on load capacitance (50pF and 1000pF), with 24mA of drive and a rise time on the order of 100ns. Additional testing ADC structures have been included in this chip to evaluate future functional additions for a next version of the chip.Comment: 13 pages, 17 gigure

    Spectrophotometry of 2 complete samples of flat radio spectrum quasars

    Get PDF
    Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given

    Comparison of numerical methods for the calculation of cold atom collisions

    Full text link
    Three different numerical techniques for solving a coupled channel Schroedinger equation are compared. This benchmark equation, which describes the collision between two ultracold atoms, consists of two channels, each containing the same diagonal Lennard-Jones potential, one of positive and the other of negative energy. The coupling potential is of an exponential form. The methods are i) a recently developed spectral type integral equation method based on Chebyshev expansions, ii) a finite element expansion, and iii) a combination of an improved Numerov finite difference method and a Gordon method. The computing time and the accuracy of the resulting phase shift is found to be comparable for methods i) and ii), achieving an accuracy of ten significant figures with a double precision calculation. Method iii) achieves seven significant figures. The scattering length and effective range are also obtained.Comment: 22 pages, 3 figures, submitted to J. Comput. Phys. documentstyle [thmsa,sw20aip]{article} in .te

    Electrical conductivity of chondritic meteorites

    Get PDF
    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 orders of magnitude greater than rock forming minerals such as olivine for temperatures up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at the grain boundaries. Much of this carbon is produced by pyrolyzation of hydrocarbons at temperatures in excess of 150 C. As the temperature increases, light hydrocarbons are driven off and a carbon-rich residue or char migrates to the grain boundaries enhancing electrical conductivity. Assuming that carbon was present at the grain boundaries in the material which comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance during a hypothetical T-Tauri phase of the sun. Input conductivity data for the meteorite parent body were the present carbonaceous chondrite values for temperatures up to 840 C and the electrical conductivity values for olivine above 840 C
    • …
    corecore