4,157 research outputs found
Thermal treatment of the minority game
We study a cost function for the aggregate behavior of all the agents
involved in the Minority Game (MG) or the Bar Attendance Model (BAM). The cost
function allows to define a deterministic, synchronous dynamics that yields
results that have the main relevant features than those of the probabilistic,
sequential dynamics used for the MG or the BAM. We define a temperature through
a Langevin approach in terms of the fluctuations of the average attendance. We
prove that the cost function is an extensive quantity that can play the role of
an internal energy of the many agent system while the temperature so defined is
an intensive parameter. We compare the results of the thermal perturbation to
the deterministic dynamics and prove that they agree with those obtained with
the MG or BAM in the limit of very low temperature.Comment: 9 pages in PRE format, 6 figure
Strategy updating rules and strategy distributions in dynamical multiagent systems
In the evolutionary version of the minority game, agents update their
strategies (gene-value ) in order to improve their performance. Motivated by
recent intriguing results obtained for prize-to-fine ratios which are smaller
than unity, we explore the system's dynamics with a strategy updating rule of
the form (). We find that the strategy
distribution depends strongly on the values of the prize-to-fine ratio , the
length scale , and the type of boundary condition used. We show that
these parameters determine the amplitude and frequency of the the temporal
oscillations observed in the gene space. These regular oscillations are shown
to be the main factor which determines the strategy distribution of the
population. In addition, we find that agents characterized by
(a coin-tossing strategy) have the best chances of survival at asymptotically
long times, regardless of the value of and the boundary conditions
used.Comment: 4 pages, 7 figure
Novel Method to Improve the Signal to Noise Ratio in the Far-field Results Obtained from Planar Near Field Measurements.
A method to reduce the noise power in far-field pattern without modifying the desired signal is proposed. Therefore, an important signal-to-noise ratio improvement may be achieved. The method is used when the antenna measurement is performed in planar nearfield, where the recorded data are assumed to be corrupted with white Gaussian and space-stationary noise, because of the receiver additive noise. Back-propagating the measured field from the scan plane to the antenna under test (AUT) plane, the noise remains white Gaussian and space-stationary, whereas the desired field is theoretically concentrated in the aperture antenna. Thanks to this fact, a spatial filtering may be applied, cancelling the field which is located out of the AUT dimensions and which is only composed by noise. Next, a planar field to far-field transformation is carried out, achieving a great improvement compared to the pattern obtained directly from the measurement. To verify the effectiveness of the method, two examples will be presented using both simulated and measured near-field data
Trophic ecology of the Endangered Darwin's frog inferred by stable isotopes
Indexación: Scopus.Acknowledgements. We thank Dr. Mauricio González-Chang for his contribution to invertebrate identification and Sally Wren for the revision of an earlier version of the manuscript. We are also extremely grateful to Tomás Elgueta Alvarez for providing Video S1. B.E.M.B. has a fellowship awarded by Universidad Andres Bello. This research project was approved by the Bioethics Committee at the Universi-dad Andres Bello, Chile (N°13/2015), and by permits N°5666/2013, N°230/2015, and N°212/2016 of the Chilean Agriculture and Livestock Service, and N°026/2013 and N°11/2015 IX of the Chilean National Forestry Corporation. This study was funded by the Dirección General de Investi-gación y Doctorados, Universidad Andres Bello, through grant N°DI-53-11/R and national funds through FONDE CYT N°11140902 and 1181758 (to C.S.A.).Darwin's frogs Rhinoderma spp. are the only known mouth-brooding frogs on Earth. The southern Darwin's frog, R. darwinii, is found in the temperate forests of southern South America, is listed as Endangered and could be the only extant representative of this genus. Based on stomach contents, invertebrate prey availability and stable isotope analysis, we determined for the first time trophic ecological parameters for this species. Our results showed that R. darwinii is a generalist sit-and-wait predator and a secondary consumer, with a trophic position of 2.9. Carbon and nitrogen isotope composition indicated that herbivore invertebrates are their main prey, detected in 68.1% of their assimilated food. The most consumed prey included mosquitoes, flies, crickets, grasshoppers and ants. Detritivore and carnivore invertebrates were also ingested, but in lower proportions. Our results contribute to a better understanding of the feeding habits of this fully terrestrial amphibian and provide the first insight into their role linking low forest trophic positions with intermediate predators. We provide valuable biological information for in situ and ex situ conservation which can be used when developing habitat protection, reintroduction and captive breeding programmes. As revealed here, stable isotope analysis is a valuable tool to study the trophic ecology of highly endangered and cryptic species. © The authors 2018.https://www.int-res.com/abstracts/esr/v36/p269-278
Quantum tomography via equidistant states
We study the possibility of performing quantum state tomography via
equidistant states. This class of states allows us to propose a non-symmetric
informationally complete POVM based tomographic scheme. The scheme is defined
for odd dimensions and involves an inversion which can be analytically carried
out by Fourier transform
Theory of Phase Transition in the Evolutionary Minority Game
We discover the mechanism for the transition from self-segregation (into
opposing groups) to clustering (towards cautious behaviors) in the evolutionary
minority game (EMG). The mechanism is illustrated with a statistical mechanics
analysis of a simplified EMG involving three groups of agents: two groups of
opposing agents and one group of cautious agents. Two key factors affect the
population distribution of the agents. One is the market impact (the
self-interaction), which has been identified previously. The other is the
market inefficiency due to the short-time imbalance in the number of agents
using opposite strategies. Large market impact favors "extreme" players who
choose fixed strategies, while large market inefficiency favors cautious
players. The phase transition depends on the number of agents (), the
reward-to-fine ratio (), as well as the wealth reduction threshold () for
switching strategy. When the rate for switching strategy is large, there is
strong clustering of cautious agents. On the other hand, when is small, the
market impact becomes large, and the extreme behavior is favored.Comment: 5 pages and 3 figure
Recommended from our members
A case of atypical disseminated herpes simplex virus 1 with hepatitis in a liver transplant recipient: the need for dermatologic evaluation
Disseminated herpes simplex virus (HSV) is mainly seen in immunocompromised individuals. Atypical lesions can be present in both primary infection and reactivation disease. Compared with the general population, inmunocompromised hosts are at greater risk of increased persistency and severity of clinical manifestations, including severe systemic involvement such as esophagitis, meningitis, and hepatitis. Herein, we report the case of a liver transplant recipient with atypical disseminated herpes simplex virus-1 complicated by HSV-related hepatitis. Dermatological consultation and histological assessment were crucial for a correct diagnosis and treatment
- …