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ABSTRACT 
A method to reduce the noise power in far-field pattern 
without modifying the desired signal is proposed. 
Therefore, an important signal-to-noise ratio 
improvement may be achieved. The method is used when 
the antenna measurement is performed in planar near-
field, where the recorded data are assumed to be 
corrupted with white Gaussian and space-stationary noise, 
because of the receiver additive noise. Back-propagating 
the measured field from the scan plane to the antenna 
under test (AUT) plane, the noise remains white Gaussian 
and space-stationary, whereas the desired field is 
theoretically concentrated in the aperture antenna. Thanks 
to this fact, a spatial filtering may be applied, cancelling 
the field which is located out of the AUT dimensions and 
which is only composed by noise. Next, a planar field to 
far-field transformation is carried out, achieving a great 
improvement compared to the pattern obtained directly 
from the measurement. To verify the effectiveness of the 
method, two examples will be presented using both 
simulated and measured near-field data. 
 
Keywords: Anechoic chamber, antenna measurements, 
back-propagation, filtering, Gaussian noise. 

 

1. Introduction 

Near-field measurements have become one of the 
most commonly employed techniques to obtain antenna 
radiation patterns. In contrast to conventional far-field 
ranges, the distance between the antenna under test 
(AUT) and the probe is reduced, and unwanted 
contributions from reflections or diffraction from the 
environment are largely suppressed in the anechoic 
chambers in which these measurements are typically 
performed. Moreover, accurate far-field results can be 
obtained from near-field data by using either a modal 
expansion method [1], [2] or an equivalent currents 
reconstruction method [3], [4]. These techniques yield 
far-field results that are in many cases more accurate than 
the obtained in a far-field range. Nevertheless, as in all 

measurements, there are always sources of error that must 
be taken into account in near-field AUT measurements. 
References [5]-[10] are examples of studies that examine 
the relationships between the measurement errors and 
their effects on the far-field using mathematical analyses, 
simulations, or measurement tests. The results obtained in 
these studies can be used to estimate the impact of a 
particular error or a combination of errors on the far-field 
pattern. In addition, the results can be used to deduce the 
maximum admissible near-field error for a given level of 
accuracy in the far-field or to assess the accuracy of a 
near-field range [11].  

Random noise is one of the errors that limits the 
accuracy of far-field results, particularly, when measuring 
a low-sidelobe or a high-performance antenna. Some 
comprehensive studies for random noise in near-field 
measurements have already been presented. For the 
planar system, two independent analyses with similar 
results have been proposed in [12], [13]. Both of them 
start with random errors in the planar near-field and 
obtain expressions that represent the signal-to-noise ratio 
in the far-field as a function of the noise power in the 
near-field. A similar study for cylindrical near-field 
measurements was carried out in [14], [15]. These latter 
publications derived an expression relating the noise 
power in the near-field and far-field. The cylindrical case 
was also discussed in [16], which investigated the 
improvement of the signal-to-noise ratio achieved through 
the cylindrical near-field to far-field transformation. 

This paper focuses on the planar near-field case, here, 
the measurement is assumed to be corrupted by complex 
white Gaussian and space-stationary noise (as in [14], 
[15]). In contrast to previous studies, we perform a 
statistical analysis of the random noise, and propose an 
algorithm to reduce the noise power in the far-field to 
improve the signal-to-noise ratio. Increasing the signal-to-
noise ratio by reducing the noise power was also proposed 
in [17], [18], studies that also presented a technique to 
cancel a greater portion of the noise by means of a modal 
filtering. In this paper, noise reduction is achieved with 
noise filtering; here, however, spatial filtering is 
employed instead of a modal filtering. More information 
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about the presented method can be found in [19]. 
This paper is organized as follows. Section 2 gives an 

overview of the back-propagation process to obtain the 
field at the AUT plane from the measured field. The 
effect of the back-propagation process on the random 
noise is also analyzed in this section. Section 3 describes 
the method implemented to improve the signal-to-noise 
ratio. Section 4 presents two numerical results to analyze 
the effectiveness of the algorithm. Finally, conclusions 
are discussed in section 5. 

 

2. Back-propagation of the planar near-field 

As previously stated, the objective of this paper is to 
mitigate the undesired effects of random noise when the 
measurement is performed in planar near-field. This noise 
mitigation is accomplished by means of filtering before 
obtaining the far-field results. Because all the measured 
data are always noise corrupted, filtering cannot be 
applied to this initial information and a new data 
representation that allows for noise filtering without 
cancelling out the desired information is needed. For this, 
once the planar near-field measurement has been 
performed, the field at the AUT plane (reconstructed 
field) is computed. Because, the desired contribution is 
theoretically located inside the dimensions of the AUT, 
filtering can be applied to cancel the outside contribution 
due to noise.  

2.1. Theoretical description of the transformation 

Because the scan plane and the AUT plane are parallel, 
an easy transformation from one plane to the other can be 
performed using field back-propagation [20], [21]. 
Assuming that the normal axis to both planes is the z-axis 
and that the distance between them is d , the measured 
near-field components are � �, , ,meas xE x y d  and 

� �, , ,meas yE x y d . In addition, the plane wave spectrum 
(PWS) components referenced to the scan plane, 
� �, ,x x yP k k d  and � �, ,y x yP k k d , are calculated as follows 
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The next step to calculate the reconstructed field is to 

reference the last quantities given by (1) to the AUT 
plane. Each plane wave is multiplied by a term that 
depends on the distance between planes as well as the 
longitudinal component of the propagation vector, 

2 2 2
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Finally, using the inverse expression of (1), the 

electric-field components over the AUT plane, 
� �, , ,0ap xE x y  and � �, , ,0ap yE x y , can be computed. 
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2.2. Noise analysis in the back-propagation process 

After reviewing the theory behind the planar near-field 
to reconstructed field transformation, an analysis to assess 
the noise behavior and to obtain its statistical parameters 
was carried out. In the analysis, a complex white 
Gaussian and space-stationary noise was considered. Its 
mean and variance were assumed to be zero and 2

nf	 , 
respectively. Because all the expressions are linear for the 
back-propagation process, the analysis is performed by 
considering only the noise. In addition, the expressions 
and the noise are the same for both electric-field 
polarizations. As a result, the study is developed for a 
generic case.  

Using planar near-field data containing only noise and 
applying the discrete version of (1), the PWS referenced 
to the scan plane due to the noise can be obtained. 
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where � �, ,nf i in x y d  represents the planar near-field, 

� �, ,x yN k k d  is the PWS referenced to the scan plane, x
  

and y
  symbolize the sample spacing in the x- and y-
directions, and M  is the total number of planar near-field 
samples. Because noise is an independent random 
variable at each measurement point, the PWS obtained 
from (4) is also modeled as Gaussian and space-
stationarity noise with zero mean. The variance is 
determined as (5) indicated. 
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Figure 1 – Statistical properties of noise in the field 

back-propagation 
 

The next step in the transformation process is reference 
previous PWS to the AUT plane. To do this, the PWS is 
multiplied by a complex factor of unity amplitude, as 
shown (6). The resulting quantity is also another 
Gaussian noise with the same statistical properties. 
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Finally, the reconstructed field is obtained by using the 

discrete version of (3). 
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where � �, ,0apn x y  is the field over the AUT plane, xk
  and 

yk
  represent the spectral steps in the kx- and ky-
directions, and kM  stands for the total number of spectral 
samples. The total number of spectral samples is equal to 
M  because, the last summations in (4), (7) are evaluated 
using the FFT algorithm. 

From (7), it is deduced that the field at each point of the 
reconstructed plane is also a Gaussian random variable 
with zero mean and variance calculated as in (5), i.e., by 
determining the autocorrelation in (0,0). 
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Figure 2 – Regions of interest in the reconstructed 

domain 
 
where the following relationships have been taken into 
account: 
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where xM  and yM  represent the number of planar near-
field samples in the x- and y-directions. 

From the previous analysis, it can be seen that, for  
planar near-field noise with the aforementioned statistical 
characteristics, the noise both in the PWS and in the 
reconstructed field is a complex, stationary, white 
Gaussian noise, with zero mean and variance given by (5) 
and (8), respectively, as shown Figure 1.  

 

3. Description of the method 

As mentioned before, the main purpose of the proposed 
method is to reduce the far-field noise power obtained in 
a planar near-field measurement. However, noise 
reduction cannot be achieved at the input because both the 
noise and the desired contribution are distributed over the 
whole measurement surface. For this reason, a field 
transformation is required to filter out a portion of the 
noise without modifying the desired signal. This paper 
presents a method that performs back-propagation of the 
field from the scan plane to the AUT surface. The steps of 
the method are indicated below: 

 
� Perform a planar near-field measurement. 
� Obtain the PWS referenced to the scan plane. 
� Back-propagate the PWS from the scan plane to 

the AUT plane. 
� Determine the reconstructed field. 



� Filter the portion of noise located beyond the 
AUT dimensions. 

� Calculate a new PWS with less noise power. 
 

After presenting all the points of the proposed method, 
we analyze the signal-to-noise ratio improvement which 
can be achieved. The definition of filtering employed in 
the method appears in (12). 
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where T�  and A�  represent the reconstructed region and 
the AUT region depicted in Figure 2. In Figure 2, xD  and 

yD  are the x- and y-dimensions of the reconstructed 
surface. xA  and yA  represent the maximum length of the 
AUT in each direction. 

As shown below, the variation of the maximum signal 
level in the PWS due to filtering is negligible. As a result, 
the signal-to-noise ratio improvement remains equal to 
the noise reduction. The noise power in the PWS for any 
kind of filtering applied is given by (5). Thus, the only 
unknown quantity needed to specify the improvement is 
the variance of the noise in the PWS obtained after spatial 
filtering. This new PWS is determined as follows 
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The noise power of this final quantity, denoted as 2
'N	 , 

can be calculated as (14) indicates. 
  

 

� � � � � �2 *
' '

222
2 2 2

2
2

0,0 ' , ,0 ' , ,0

2 2 2

2

A

x y

A

N N x y x y

yx
nf

nf
x y

R E N k k N k k

MyMxMx yM k k
M

Sx yM
D D

�

�

	

	
� � �

	
�

� 
� � � �


� �

 
 � �� �� 
 
� �� � � �� � � � � �


 
� �� � �
� �

(14) 

 
where 

A
S�  is the area of A� . Therefore, the signal-to-

noise ratio improvement achieved with the proposed 
spatial filtering method can be calculated using (5) and 
(14). 

 
Figure 3 – Simulated near-field. Comparison between 
the reference PWS, the PWS with noise and the PWS 

after the noise filtering in �� = 90º plane.  
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where SFSNR  and WFSNR  are the signal-to-noise ratios 
after spatial filtering and without filtering and ,SF thSNR
  
symbolizes the theoretical increase in the signal-to-noise 
ratio due to spatial filtering. 

In this section, the desired field is assumed to be 
concentrated on the AUT region. Nevertheless, this 
assumption is not completely correct. A small field 
contribution always exists outside the AUT. The 
cancellation of this contribution may introduce a 
significant error, mainly in the sidelobes, in the final 
PWS. To avoid this negative effect, spatial filtering over a 
larger area must be employed to account for all of the 
desired data. 

 

4. Numerical results 

To validate the proposed method, two different 
examples are presented. The first one takes as input data 
the values of a simulation of a planar acquisition. The last 
one uses information of an actual measurement in the 
planar near-field range of the Technical University of 
Madrid (UPM). 

4.1. Simulation data 

In this first example, a simulation that considers both 
noise and the contribution of the AUT is presented. The 
AUT is composed of 20 x 20 infinitesimal dipoles with a 
uniform excitation. The separation between the dipoles is 

� �0.5 λ 3 GHz , and the planar near-field samples are 
spaced at 0.5 λ  intervals. The number of samples in the 
scan plane are 200 x 200 and the distance from this last 
plane to the AUT is d = 20 λ . Once the planar acquisition 



Figure 4 – Experimental measurement of a pyramidal 
horn antenna in a planar near-field range 

of the infinitesimal dipole array has been simulated, 
taking into account all previous specifications, Gaussian 
noise with 25 dB less power than the maximum of the 
simulated data is added. Next, the proposed method is 
applied. Figure 3 shows a cut of the radiation pattern, 
seeing that a great improvement is achieved after filtering 
a portion of noise in the reconstructed field. The 
improvement can be calculated by applying (15) and is 
equal to 20 dB. 

4.2. Measured planar near-field data 

In another example that uses the data from an actual 
measurement, data were obtained by using the planar-
range measurement system in the anechoic chamber at the 
Technical University of Madrid (UPM). For the 
experiment, the probe and the AUT consisted of a 
corrugated conical-horn antenna and a 5 cm × 7 cm  
pyramidal-horn antenna. The antennas were separated by 
1.57 m. Once both antennas were mounted onto 
positioners (see Fig. 4), a measurement over a 
2.4 m×2.4 m  acquisition plane with a spatial sampling 
equal to � �0.43 λ 13 GHz was recorded. Gaussian noise 
with 30 dB less power than the maximum of the acquired 
data was added computationally. As in the preceding 
example, after obtaining the corrupted data, the method to 
improve the signal-to-noise ratio was employed. In this 
case, there is a large truncation error, so a filtering 
window larger than the AUT dimensions was required 
(0.3 m x 0.3 m). The improvement achieved with this 
filtering is equal to 18.06 dB. Figure 5 depicts a cut of the 
radiation pattern where it is possible to see that 
improvement.  

 

5. CONCLUSIONS 

In this paper, we have presented a simple and efficient 
method to improve the signal-to-noise ratio in far-field 
results obtained from planar near-field measurements. 
Firstly, a statistical study of the noise was performed. 
Next, the method was exposed and then was validated 
with two numerical results. As mentioned before, because  

 
Figure 5 – Experimental measurement in planar 

near-field. Comparison between the reference PWS, 
the PWS with noise and the PWS after the noise 

filtering in �� = 90º plane. 

the method can only be applied in planar near-field 
measurements, there will be a truncation error which may 
significantly extend the reconstructed field beyond the 
AUT dimensions. Therefore, an adaptive filtering window 
has to be used. 
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