100 research outputs found

    The establishment of a primary spine care practitioner and its benefits to health care reform in the United States

    Get PDF
    It is widely recognized that the dramatic increase in health care costs in the United States has not led to a corresponding improvement in the health care experience of patients or the clinical outcomes of medical care. In no area of medicine is this more true than in the area of spine related disorders (SRDs). Costs of medical care for SRDs have skyrocketed in recent years. Despite this, there is no evidence of improvement in the quality of this care. In fact, disability related to SRDs is on the rise. We argue that one of the key solutions to this is for the health care system to have a group of practitioners who are trained to function as primary care practitioners for the spine. We explain the reasons we think a primary spine care practitioner would be beneficial to patients, the health care system and society, some of the obstacles that will need to be overcome in establishing a primary spine care specialty and the ways in which these obstacles can be overcome.https://doi.org/10.1186/2045-709X-19-1

    Evaluation of a Theory-Informed Implementation Intervention for the Management of Acute Low Back Pain in General Medical Practice: The IMPLEMENT Cluster Randomised Trial

    Get PDF
    Introduction: This cluster randomised trial evaluated an intervention to decrease x-ray referrals and increase giving advice to stay active for people with acute low back pain (LBP) in general practice. Methods: General practices were randomised to either access to a guideline for acute LBP (control) or facilitated interactive workshops (intervention). We measured behavioural predictors (e.g. knowledge, attitudes and intentions) and fear avoidance beliefs. We were unable to recruit sufficient patients to measure our original primary outcomes so we introduced other outcomes measured at the general practitioner (GP) level: behavioural simulation (clinical decision about vignettes) and rates of x-ray and CT-scan (medical administrative data). All those not involved in the delivery of the intervention were blinded to allocation. Results: 47 practices (53 GPs) were randomised to the control and 45 practices (59 GPs) to the intervention. The number of GPs available for analysis at 12 months varied by outcome due to missing confounder information; a minimum of 38 GPs were available from the intervention group, and a minimum of 40 GPs from the control group. For the behavioural constructs, although effect estimates were small, the intervention group GPs had greater intention of practising consistent with the guideline for the clinical behaviour of x-ray referral. For behavioural simulation, intervention group GPs were more likely to adhere to guideline recommendations about x-ray (OR 1.76, 95%CI 1.01, 3.05) and more likely to give advice to stay active (OR 4.49, 95%CI 1.90 to 10.60). Imaging referral was not statistically significantly different between groups and the potential importance of effects was unclear; rate ratio 0.87 (95%CI 0.68, 1.10) for x-ray or CT-scan. Conclusions: The intervention led to small changes in GP intention to practice in a manner that is consistent with an evidence-based guideline, but it did not result in statistically significant changes in actual behaviour. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN01260600009853

    Selective Interaction of Syntaxin 1A with KCNQ2: Possible Implications for Specific Modulation of Presynaptic Activity

    Get PDF
    KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation

    Computational design of self-assembling cyclic protein homo-oligomers

    Get PDF
    Self-assembling cyclic protein homo-oligomers play important roles in biology, and the ability to generate custom homo-oligomeric structures could enable new approaches to probe biological function. Here we report a general approach to design cyclic homo-oligomers that employs a new residue-pair-transform method to assess the designability of a protein-protein interface. This method is sufficiently rapid to enable the systematic enumeration of cyclically docked arrangements of a monomer followed by sequence design of the newly formed interfaces. We use this method to design interfaces onto idealized repeat proteins that direct their assembly into complexes that possess cyclic symmetry. Of 96 designs that were characterized experimentally, 21 were found to form stable monodisperse homo-oligomers in solution, and 15 (four homodimers, six homotrimers, six homotetramers and one homopentamer) had solution small-angle X-ray scattering data consistent with the design models. X-ray crystal structures were obtained for five of the designs and each is very close to their corresponding computational model

    Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a complex disease, with genetics and environment contributing to the disease onset. Recent studies of causative PD genes have confirmed the involvement of cellular mechanisms engaged in mitochondrial and UPS dysfunction, oxidative stress and apoptosis in the progressive degeneration of the dopaminergic neurons in PD. In addition, clinical, epidemiological and experimental evidence has implicated neuroinflammation in the disease progression. This review will discuss neuroinflammation in PD, with particular focus on the genetic and toxin-based models of the disease. These studies have confirmed elevated oxidative stress and the pro-inflammatory response occurs early in the disease and these processes contribute to and/or exacerbate the nigro-striatal degeneration. In addition, the experimental models discussed here have also provided strong evidence that these pathways are an important link between the familial and sporadic causes of PD. The potential application of anti-inflammatory interventions in limiting the dopaminergic neuronal cell death in these models is discussed with evidence suggesting that the further investigation of their use as part of multi-targeted clinical trials is warranted

    Bilateral Failure of Oxidized Zirconium Implants in Total Knee Arthroplasty

    No full text
    Oxidized zirconium was first introduced in total hip arthroplasty procedures to merge the strengths of metal and ceramic into one prosthetic. The subsequent adoption of oxidized zirconium (oxinium) for total knee arthroplasty is attributed to the theory of causing less wear on the tibial components compared to the alternative, cobalt chromium. However, the superficial layer of the femoral component is occasionally breached, exposing the softer zirconium substrate. Multiple mechanisms leading to zirconium substrate exposure have been explained, including collateral ligament instability and polyethylene wear. Such a failure may lead to damage to the periprosthetic tissues and often requires a revision procedure. In the current case report, we present a case of bilateral total knee arthroplasty with oxidized zirconium components that resulted in catastrophic failure and subsequent revision with hinged knee prostheses

    Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro

    Get PDF
    BACKGROUND: Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer's disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ. METHODS: Wildtype and Myd88(-/-) primary cultured cortical and hippocampal neurons were treated with 2.5 μM Aβ1-42 for 24 to 72 h or 1 to 10 μM Aβ1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 μM Aβ1-42/Aβ42-1 for 24 to 96 h, 2.5 to 15 μM Aβ1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNβ, IL-1β, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay. RESULTS: Reduced IFNα, IFNβ, IL-1β, IL-6 and TNFα expression was detected in Aβ1-42-treated Myd88(-/-) neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88(-/-) neuronal cultures were protected against Aβ1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNβ and p-STAT-3 induction to both Aβ1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aβ1-42-induced cytotoxicity. CONCLUSIONS: This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aβ-induced neurotoxicity

    Surgical treatment of congenital clubfoot deformity: The Qatar experience

    No full text
    corecore