9 research outputs found

    Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line

    Get PDF
    Recent claims of a line in the Fermi-LAT photon spectrum at 130 GeV are suggestive of dark matter annihilation in the galactic center and other dark matter-dominated regions. If the Fermi feature is indeed due to dark matter annihilation, the best-fit line cross-section, together with the lack of any corresponding excess in continuum photons, poses an interesting puzzle for models of thermal dark matter: the line cross-section is too large to be generated radiatively from open Standard Model annihilation modes, and too small to provide efficient dark matter annihilation in the early universe. We discuss two mechanisms to solve this puzzle and illustrate each with a simple reference model in which the dominant dark matter annihilation channel is photonic final states. The first mechanism we employ is resonant annihilation, which enhances the annihilation cross-section during freezeout and allows for a sufficiently large present-day annihilation cross section. Second, we consider cascade annihilation, with a hierarchy between p-wave and s-wave processes. Both mechanisms require mass near-degeneracies and predict states with masses closely related to the dark matter mass; resonant freezeout in addition requires new charged particles at the TeV scale.Comment: 17 pages, 8 figure

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    Cosmic Ray Anomalies from the MSSM?

    Get PDF
    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e++ee^++e^-) flux and from PAMELA itself on the pˉ/p\bar p/p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional mSUGRA version of Supersymmetry even if boosts as large as 103410^{3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the MSSM with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the LSP is mostly pure bino and annihilates almost exclusively into τ\tau pairs comes very close to satisfying these requirements. The lightest τ~\tilde \tau in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by an amount Δχ21/\Delta \chi^2 \sim 1/dof in comparison to the best fit without Supersymmetry while employing boosts 100\sim 100. The implications of these models for future experiments are discussed.Comment: 57 pages, 31 figures, references adde

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    A realistic intersecting D6-brane model after the first LHC run

    Get PDF
    With the Higgs boson mass around 125 GeV and the LHC supersymmetry search constraints, we revisit a three-family Pati-Salam model from intersecting D6-branes in Type IIA string theory on the T6/(Z2×Z2)\mathbf{T^6/(\Z_2 \times \Z_2)} orientifold which has a realistic phenomenology. We systematically scan the parameter space for μ0\mu0, and find that the gravitino mass is generically heavier than about 2 TeV for both cases due to the Higgs mass low bound 123 GeV. In particular, we identify a region of parameter space with the electroweak fine-tuning as small as ΔEW\Delta_{EW} \sim 24-32 (3-4%\%). In the viable parameter space which is consistent with all the current constraints, the mass ranges for gluino, the first two-generation squarks and sleptons are respectively [3, 18][3, ~18] TeV, [3, 16][3, ~16] TeV, and [2, 7][2, ~7] TeV. For the third-generation sfermions, the light stop satisfying 5σ5\sigma WMAP bounds via neutralino-stop coannihilation has mass from 0.5 to 1.2 TeV, and the light stau can be as light as 800 GeV. We also show various coannihilation and resonance scenarios through which the observed dark matter relic density is achieved. Interestingly, the certain portions of parameter space has excellent tt-bb-τ\tau and bb-τ\tau Yukawa coupling unification. Three regions of parameter space are highlighted as well where the dominant component of the lightest neutralino is a bino, wino or higgsino. We discuss various scenarios in which such solutions may avoid recent astrophysical bounds in case if they satisfy or above observed relic density bounds. Prospects of finding higgsino-like neutralino in direct and indirect searches are also studied. And we display six tables of benchmark points depicting various interesting features of our model.Comment: 41 pages, 12 figures, 6 table

    Functional and Metabolic Aspects of DNA-Associated Proteins

    No full text
    corecore