92 research outputs found

    Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

    Full text link
    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral''). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.Comment: 4 pages, 4 figure

    Isotope shifts of the (3s3p)3^3P0,1,2_{0,1,2} - (3s4s)3^3S1_1 Mg I transitions

    Full text link
    We report measurements of the isotope shifts of the (3s3p)3^3P0,1,2_{0,1,2} - (3s4s)3^3S1_1 Mg I transitions for the stable isotopes 24^{24}Mg (I=0), 25^{25}Mg (I=5/2) and 26^{26}Mg (I=0). Furthermore the 25^{25}Mg 3^3S1_1 hyperfine coefficient A(3^3S1_1) = (-321.6 ±\pm 1.5) MHz is extracted and found to be in excellent agreement with state-of-the-art theoretical predictions giving A(3^3S1_1) = -325 MHz and B(3^3S1_1) 105\simeq 10^{-5} MHz. Compared to previous measurements, the data presented in this work is improved up to a factor of ten.Comment: 4 pages, 4 figures submitted to PR

    Convective and absolute Eckhaus instability leading to modulated waves in a finite box

    Get PDF
    We report experimental study of the secondary modulational instability of a one-dimensional non-linear traveling wave in a long bounded channel. Two qualitatively different instability regimes involving fronts of spatio-temporal defects are linked to the convective and absolute nature of the instability. Both transitions appear to be subcritical. The spatio-temporal defects control the global mode structure.Comment: 5 pages, 7 figures (ReVTeX 4 and amsmath.sty), final versio

    Frequency evaluation of the doubly forbidden 1S03P0^1S_0\to ^3P_0 transition in bosonic 174^{174}Yb

    Get PDF
    We report an uncertainty evaluation of an optical lattice clock based on the 1S03P0^1S_0\leftrightarrow^3P_0 transition in the bosonic isotope 174^{174}Yb by use of magnetically induced spectroscopy. The absolute frequency of the 1S03P0^1S_0\leftrightarrow^3P_0 transition has been determined through comparisons with optical and microwave standards at NIST. The weighted mean of the evaluations is ν\nu(174^{174}Yb)=518 294 025 309 217.8(0.9) Hz. The uncertainty due to systematic effects has been reduced to less than 0.8 Hz, which represents 1.5×10151.5\times10^{-15} in fractional frequency.Comment: 4 pages, 3 figure -Submitted to PRA Rapid Communication

    Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human

    No full text
    The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well

    Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms

    Get PDF
    We propose a nonlinear ocean forecasting technique based on a combination of genetic algorithms and empirical orthogonal function (EOF) analysis. The method is used to forecast the space-time variability of the sea surface temperature (SST) in the Alboran Sea. The genetic algorithm finds the equations that best describe the behaviour of the different temporal amplitude functions in the EOF decomposition and, therefore, enables global forecasting of the future time-variability.Comment: 15 pages, 3 figures; latex compiled with agums.st

    On elliptic solutions of the cubic complex one-dimensional Ginzburg-Landau equation

    Full text link
    The cubic complex one-dimensional Ginzburg-Landau equation is considered. Using the Hone's method, based on the use of the Laurent-series solutions and the residue theorem, we have proved that this equation has neither elliptic standing wave nor elliptic travelling wave solutions. This result amplifies the Hone's result, that this equation has no elliptic travelling wave solutions.Comment: LaTeX, 12 page

    Measurement of the 3s3p 3P1 lifetime in magnesium using a magneto-optical trap

    Get PDF
    We demonstrate an accurate method for measuring the lifetime of long-lived metastable magnetic states using a magneto-optical trap (MOT). Through optical pumping, the metastable (3s3p) (3)P(1) level is populated in a standard MOT. During the optical pumping process, a fraction of the population is captured in the magnetic quadrupole field of the MOT. When the metastable atoms decay to the (3s(2)) (1)S(0) ground state they are recaptured into the MOT. In this system no alternative cascading transition is possible. The lifetime of the metastable level is measured directly as an exponential load time of the MOT. We have experimentally tested our method by measuring the lifetime of the (3s3p) (3)P(1) of (24)Mg. This lifetime has been measured numerous times previously, but with quite different results. Using our method we find the (3s3p) (3)P(1) lifetime to be (4.4 +/- 0.2) ms. Theoretical values point toward a lower value for the lifetime

    New Limits on Coupling of Fundamental Constants to Gravity Using 87^{87}Sr Optical Lattice Clocks

    Full text link
    The 1S0^1\mathrm{S}_0-3P0^3\mathrm{P}_0 clock transition frequency νSr\nu_\text{Sr} in neutral 87^{87}Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1×10151\times 10^{-15} level makes νSr\nu_\text{Sr} the best agreed-upon optical atomic frequency. We combine periodic variations in the 87^{87}Sr clock frequency with 199^{199}Hg+^+ and H-maser data to test Local Position Invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant α\alpha, electron-proton mass ratio μ\mu and light quark mass. Furthermore, after 199^{199}Hg+^+, 171^{171}Yb+^+ and H, we add 87^{87}Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of α\alpha and μ\mu.Comment: Published version. 4 pages, 4 figure

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York
    corecore