923 research outputs found

    Interactions of gelatinous zooplankton within marine food webs

    Get PDF
    Gelatinous zooplankton (GZ) comprise a taxonomically and functionally diverse group of marine organisms which includes ctenophores, cnidarians and pelagic tunicates, sharing a soft, mostly transparent body texture, a high body water content and a lack of exoskeleton. They range in size from less than a millimetre to nearly 2 m for the cnidarian jellyfish Nemopilema nomurai, and comprise some of the fastest growing metazoans on Earth (Hopcroft et al., 1998), sometimes surpassing crustacean zooplankton in their contribution to secondary production (i.e. in subtropical waters; Jaspers et al., 2009). They feed on a wide range of prey sizes, with predator–prey ratios comparable in some cases to those of baleen whales and krill (Deibel and Lee, 1992), and with prey removal rates which are similar to those of their non-gelatinous competitors (Acuña et al., 2011). In spite of early work pointing to gelatinous zooplankton as a trophic dead end (Verity and Smetacek, 1996), evidence is rapidly accumulating which shows that they may potentially channel energy from the picoplankton-sized, microbial loop organisms up to the higher trophic levels, including fish (Llopiz et al., 2010). However, this pathway is still largely neglected in most food web investigations even though it is now becoming clear that GZ represent a major fraction of the diet of several commercially important fish species such as bluefin tuna (Thunnus thynnus) (Cardona et al., 2012)

    Control of the Onset of Filamentation in Condensed Media

    Full text link
    Propagation of intense, ultrashort laser pulses through condensed media like crystals of BaF2_2 and sapphire results in the formation of filaments. We demonstrate that the onset of filamentation may be controlled by rotating the plane of polarization of incident light. We directly visualize filamentation in BaF_2 via six-photon absorption-induced fluorescence and, concomitantly, by probing the spectral and spatial properties of white light that is generated.Comment: To appear in Phys. Rev.

    First direct mass-measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He

    Full text link
    The first direct mass-measurement of 6^{6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of 8^{8}He was determined with improved precision over our previous measurement. The obtained masses are mm(6^{6}He) = 6.018 885 883(57) u and mm(8^{8}He) = 8.033 934 44(11) u. The 6^{6}He value shows a deviation from the literature of 4σ\sigma. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and 1.959(16) fm for 6^{6}He and 8^{8}He respectively. We present a detailed comparison to nuclear theory for 6^6He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.Comment: 4 pages, 2 figure

    First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li

    Full text link
    In this letter, we report a new mass for 11^{11}Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t1/2=8.8mst_{1/2} = 8.8 \rm{ms}, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of 8,9^{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of seven more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11^{11}Li. This result is a remarkable confluence of nuclear and atomic physics.Comment: Formatted for submission to PR

    Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation

    Full text link
    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the Isobaric Mass Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29^{29}Cl and 30^{30}Ar. The atomic mass of 27^{27}Mg was found to be within 1.6σ\sigma of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29^{28,29}Mg were measured to be both within 1σ\sigma, while being 8 and 34 times more precise, respectively. Using the 29^{29}Mg mass excess and previous measurements of 29^{29}Cl we uncovered a cubic coefficient of dd = 28(7) keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28^{28}S and the one-neutron separation energy of 29^{29}Cl, which have both come from a single measurement. Finally, our results were compared to ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure

    Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

    Full text link
    Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of 20,21Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by six orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of 21Mg is in good agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
    corecore