100 research outputs found

    UPLC-MS-ESI-QTOF analysis and antifungal activity of the spondias tuberosa arruda leaf and root hydroalcoholic extracts

    Get PDF
    The aim of this study was to identify and evaluate the chemical compositions and effects of the S. tuberosa leaf and root hydroalcoholic extracts (HELST and HERST) against different strains of Candida. Chemical analysis was performed by Ultra-Performance Liquid Chromatography Coupled to Quadrupole/Time of Flight System (UPLC-MS-ESI-QTOF). The Inhibitory Concentration of 50% of the growth (IC50) as well as the intrinsic and combined action of the extracts with the antifungal fluconazole (FCZ) were determined by the microdilution method while the minimum fungicidal concentrations (MFCs) and the effect on fungal morphological transitions were analyzed by subculture and in humid chambers, respectively. From the preliminary phytochemical analysis, the phenols and flavonoids were the most abundant. The intrinsic IC50 values for HELST ranged from 5716.3 to 7805.8 \ub5g/mL and from 6175.4 to 51070.9 \ub5g/mL for the HERST, whereas the combination of the extracts with fluconazole presented IC50 values from 2.65 to 278.41 \ub5g/mL. The MFC of the extracts, individually, for all the tested strains was 6516384 \ub5g/mL. When fluconazole was combined with each extract, the MFC against CA URM 5974 was reduced (HELST: 2048 and HERST: 4096 \ub5g/mL). Synergism was observed against standard C. albicans (CA) and C. tropicalis (CT) strains and with the root extract against the CT isolate. The leaf extract inhibited the morphological transition of all strains while the root extract inhibited only CT strains

    Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization

    Get PDF
    A great demand for prebiotics is driving the search for new sources of fructo-oligosaccharides (FOS) producers and for FOS with differentiated functionalities. In the present work, FOS production by a new isolated strain of Aspergillus ibericus was evaluated. The temperature of fermentation and initial pH were optimized in shaken flask to yield a maximal FOS production, through a central composite experimental design. FOS were produced in a one-step bioprocess using the whole cells of the microorganism. The model (R2 = 0.918) predicted a yield of 0.56, experimentally 0.53 ± 0.03 gFOS.ginitial sucrose1 was obtained (37.0 °C and a pH of 6.2). A yield of 0.64 ± 0.02 gFOS.ginitial sucrose1 was obtained in the bioreactor, at 38 h, with a content of 118 ± 4 g.L1 in FOS and a purity of 56 ± 3%. The chemical structure of the FOS produced by A. ibericus was determined by HPLC and NMR. FOS were identified as 1-kestose, nystose, and 1F-fructofuranosylnystose. In conclusion, A. ibericus was found to be a good alternative FOS producer.Clarisse Nobre acknowledges the Portuguese Foundation forScience and Technology (FCT) for her Post-Doc Grant [ref. SFRH/BPD/87498/ 2012] and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124FEDER-027462), the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation(NORTE-01-0145-FEDER-000004) and the project MultiBiorefinery (POCI-01-0145-FEDER-016403) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology

    Full text link
    The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.Comment: Accepted by Journal of Statistical Physic
    corecore