164 research outputs found

    Predicted impacts of land use change on groundwater recharge of the upper Berg catchment, South Africa

    Get PDF
    Land use change is a major factor influencing catchment hydrology and groundwater resources. In South Africa, the management of scarce water resources is a big concern. The study area, the upper Berg catchment, Western Cape, South Africa, contains strategic water resources. The catchment has undergone many changes in recent years, not least of all the construction of a dam on the upper reach. To reduce water loss due to evapotranspiration, non-native hill slope vegetation upstream of the Berg River Dam was cut down. It was hypothesised that recharge has been increased due to this change in vegetation. The objectives of this study were to determine land use changes in upper Berg catchment using multi-temporal Landsat images from 1984, 1992, 2002, and 2008, and to predict the impact of these land use changes on groundwater recharge. For the simulation of groundwater recharge the distributed hydrological model WetSpa was used. Forest plantations lost 72% (18.8 km2) of their areal extent between 1984 and 2008, due to deforestation as part of a plan to implement the ecological Reserve as required by national water policy; the area of barren land increased by 15.7 km2 in the same period. The high increase in precipitation, especially in the period of 2005–2009, combined with the change in land use in the study area resulted in a highly increased (278%) predicted mean groundwater recharge. Simulated groundwater recharge shows strong spatial differences for each evaluated year. The effect of the rapid clearing of non-native hill slope vegetation upstream of the Berg River Dam for the land use scenario of 2008 was tested to check if clearing is an important factor in the increase of groundwater recharge. Hence, we simulated the whole time-series from 1984–2004 (21 years) with the land use map from 2008 instead of the land use maps for 1984, 1992 and 2002. A systematic increase of about 8% per year for the 21-year period, due to the change in land use from the different years to that of 2008, is predicted , which confirms that the clearing of the non-native hill slope vegetation is of considerable importance for the increase in groundwater recharge.Keywords: Berg catchment, ecological Reserve, WetSpa, remote sensin

    Groundwater discharges to aquatic ecosystems associated with the Table Mountain Group (TMG) aquifer: A conceptual model

    Get PDF
    This paper reports on a conceptual model that was developed to describe the different groundwater discharge ‘types’ from the Table Mountain Group (TMG) aquifer, that contributes to the different components of the flow regime in each of the recognised river reaches for streams and rivers associated with the TMG. This model integrates hydrogeological, ecological and geomorphological understandings into an ecohydrological perspective linking ground- and surface water systems. Through geospatial intersections of existing GIS layers a GIS model was also developed to highlight the quaternary catchments containing sensitive aquatic ecosystems that could be vulnerable to groundwater use from the TMG. The conceptual model demonstrates the intimate link between groundwater from the TMG aquifer and aquatic ecosystems in the mountain and foothill reaches of streams and rivers in the Cape Folded Mountains in particular. It also identifies two primary zones of interaction between groundwater and surface water in the TMG, namely, the ‘TMG aquifer daylightdomain’, located in the recharge zone, and the ‘TMG aquifer surface water interface-domain’, located at the discharge end of the aquifer. The conceptual model clearly indicates the difference between real groundwater, and perceived groundwater contributions to streamflow in the TMG. It is the lower flows of the flow regime that will be most vulnerable to groundwater use from the TMG aquifer in the ‘TMG aquifer daylight-domain’, which are unfortunately also the most important flows from an ecological perspective. However, any groundwater use from the TMG aquifer will also affect the discharge end of the aquifer, located far from the higher elevation recharge areas, or the point of groundwater abstraction, in lowland settings in the ‘TMG aquifer surface water interface-domain’. The GIS model integrated the conceptual understanding into a management tool by highlight all quaternary catchments associated with TMG containing sensitive aquatic ecosystems and gave the variable vulnerability for each.Keywords: ecohydrology, ecosystem dynamics, groundwater abstraction, river basin management, streamflow regime, TMG aquife

    Application of the rainfall infiltration breakthrough (RIB) model for groundwater recharge estimation in west coastal South Africa

    Get PDF
    Recharge estimation in arid and semi-arid areas is very challenging. The chloride mass balance method applied in western South Africa fails to provide reliable recharge estimates near coastal areas. A relationship between rainfall events and water level fluctuations (WLF) on a monthly basis was proposed in the rainfall infiltration breakthrough (RIB) model for the purpose of groundwater recharge estimation. In this paper, the physical meaning of parameters in the CRD and previous RIB models is clarified, and the RIB model is reviewed with the algorithm improved to accommodate various time scales, namely, daily, monthly and annual scales. Recharge estimates on a daily and monthly basis using the revised RIB approach in 2 study areas, one in a sandy alluvial aquifer (Riverlands) and the other in the Table Mountain Group (TMG) shallow unconfined aquifer (Oudebosch), are presented, followed by sensitivity analysis. Correlation analysis between rainfall and observed WLF data at daily scale and monthly scale, together with recharge estimates obtained from other methods, demonstrates that the RIB results using monthly data are more realistic than those for daily data, when using long time series. Scenarios using the data from Oudebosch with different rainfall and groundwater abstraction inputs are simulated to explore individual effects on water levels as well as recharge rate estimated on a daily basis. The sensitivity analysis showed that the recharge rate by the RIB model is specifically sensitive to the parameter of specific yield; therefore, the accurate representative specific yield of the aquifer needs to be selected with caution. The RIB model demonstrated in these two cases can be used to estimate groundwater recharge with sufficiently long time series of groundwater level and rainfall available in similar regions. In summary, the RIB model is best suited for shallow unconfined aquifers with relatively lower transmissivity;the utility of the RIB model for application in different climatic areas under different hydrogeological conditions needs to be further explored.Keywords: RIB model, shallow unconfined aquifer, groundwater-level fluctuation, groundwater recharge,Table Mountain Group aquife

    Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms

    Get PDF
    Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases inherent to meta-analyses. In the category of passive dispersers, large-bodied groups showed stronger spatial patterning than small-bodied groups suggesting an increasing impact of dispersal limitation with increasing body size. Metacommunities of organisms with the ability to fly (i.e. insect groups) showed a weaker imprint of dispersal limitation than passive dispersers with similar body size. In contrast, dispersal movements of vertebrate groups (fish and amphibians) seemed to be mainly confined to local connectivity patterns. Our results reveal that body size and dispersal mode are important drivers of metacommunity structure and these traits should therefore be considered when developing a predictive framework for metacommunity dynamics

    Deeper knowledge of shallow waters: reviewing the invertebrate fauna of southern African temporary wetlands

    Get PDF
    Temporary lentic wetlands are becoming increasingly recognised for their collective role in contributing to biodiversity at the landscape scale. In southern Africa, a region with a high density of such wetlands, information characterising the fauna of these systems is disparate and often obscurely published. Here we provide a collation and synthesis of published research on the aquatic invertebrate fauna inhabiting temporary lentic wetlands of the region. We expose the poor taxonomic knowledge of most groups, which makes it difficult to comment on patterns of richness and endemism

    Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The population structure of cyclical parthenogens such as water fleas is strongly influenced by the frequency of alternations between sexual and asexual (parthenogenetic) reproduction, which may differ among populations and species. We studied genetic variation within six populations of two closely related species of water fleas of the genus <it>Daphnia </it>(Crustacea, Cladocera). <it>D. galeata </it>and <it>D. longispina </it>both occur in lakes in the Tatra Mountains (Central Europe), but their populations show distinct life history strategies in that region. In three studied lakes inhabited by <it>D. galeata</it>, daphnids overwinter under the ice as adult females. In contrast, in lakes inhabited by <it>D. longispina</it>, populations apparently disappear from the water column and overwinter as dormant eggs in lake sediments. We investigated to what extent these different strategies lead to differences in the clonal composition of late summer populations.</p> <p>Results</p> <p>Analysis of genetic variation at nine microsatellite loci revealed that clonal richness (expressed as the proportion of different multilocus genotypes, MLGs, in the whole analysed sample) consistently differed between the two studied species. In the three <it>D. longispina </it>populations, very high clonal richness was found (MLG/N ranging from 0.97 to 1.00), whereas in <it>D. galeata </it>it was much lower (0.05 to 0.50). The dominant MLGs in all <it>D. galeata </it>populations were heterozygous at five or more loci, suggesting that such individuals all represented the same clonal lineages rather than insufficiently resolved groups of different clones.</p> <p>Conclusions</p> <p>The low clonal diversities and significant deviations from Hardy-Weinberg equilibrium in <it>D. galeata </it>populations were likely a consequence of strong clonal erosion over extended periods of time (several years or even decades) and the limited influence of sexual reproduction. Our data reveal that populations of closely related <it>Daphnia </it>species living in relatively similar habitats (permanent, oligotrophic mountain lakes) within the same region may show strikingly different genetic structures, which most likely depend on their reproductive strategy during unfavourable periods. We assume that similar impacts of life history on population structures are also relevant for other cyclical parthenogen groups. In extreme cases, prolonged clonal erosion may result in the dominance of a single clone within a population, which might limit its microevolutionary potential if selection pressures suddenly change.</p

    Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads

    Get PDF
    The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits

    Social-ecological assessment of Lake Manyara basin, Tanzania: A mixed method approach.

    Get PDF
    This research article published by Elsevier Ltd., 2020The social-ecological system of the Lake Manyara basin (Northern Tanzania), a UNESCO Biosphere reserve (BR) suffers from social-economic and environmental problems due to decreasing water levels, erosion and land and water use conflicts. We propose an integrated assessment of the social-ecological interactions of the area to support future sustainable management. Within the Drivers-Pressures-State-Impact-Response (DPSIR) framework an integrated literature review and several methods of knowledge collection were combined to identify future management priorities and challenges. During focus groups with farmers and pastoralists, stakeholders confirmed the role played by land use changes as driver and pressure in the landscape, e.g. through increased erosion rates and siltation of the lake. Moreover, economic and social issues were identified as prominent factors being influenced by, or influencing these processes. These statements match the scientific literature. During participatory mapping exercises different spatial and resource allocation perceptions appeared amongst pastoralists and farmers. The multidisciplinary approach proved to be useful to acquire an integrated and comprehensive understanding of the state, challenges and opportunities of Lake Manyara BR, to feed into a decision support system in service of an integrated management plan. Our assessment suggests that improved water governance in a multi-actor approach (with a focus on distribution of benefits, rights, and a specific role of the water authorities) should be a priority for future integrated management strategies. Also, awareness raising amongst decision makers, scientists and local communities is needed to demonstrate the advantages of an integrated approach. And finally, visible and fair mechanisms to share conservation revenues should be designed in a way that local benefits can be obtained together with incentive mechanisms for co-management and conservation
    corecore