116 research outputs found

    Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo

    Get PDF
    The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity

    Effect of a Simple Information Booklet on Pain Persistence after an Acute Episode of Low Back Pain: A Non-Randomized Trial in a Primary Care Setting

    Get PDF
    Mass-media campaigns have been known to modify the outcome of low back pain (LBP). We assessed the impact on outcome of standardized written information on LBP given to patients with acute LBP.A 3-month pragmatic, multicenter controlled trial with geographic stratification.Primary care practice in France.2752 patients with acute LBP.An advice book on LBP (the "back book").The main outcome measure was persistence of LBP three months after baseline evaluation.2337 (85%) patients were assessed at follow-up and 12.4% of participants reported persistent LBP. The absolute risk reduction of reporting persistent back pain in the intervention group was 3.6% lower than in the control group (10.5% vs. 14.1%; 95% confidence interval [-6.3% ; -1.0%]; p value adjusted for cluster effect = 0.01). Patients in the intervention group were more satisfied than those in the control group with the information they received about physical activities, when to consult their physician, and how to prevent a new episode of LBP. However, the number of patients who had taken sick leave was similar, as was the mean sick-leave duration, in both arms, and, among patients with persistent pain at follow-up, the intervention and control groups did not differ in disability or fear-avoidance beliefs.The level of improvement of an information booklet is modest, but the cost and complexity of the intervention is minimal. Therefore, the implications and generalizability of this intervention are substantial.ClinicalTrials.gov NCT00343057

    Temporal changes in key maternal and fetal factors affecting birth outcomes: A 32-year population-based study in an industrial city

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The link between maternal factors and birth outcomes is well established. Substantial changes in society and medical care over time have influenced women's reproductive choices and health, subsequently affecting birth outcomes. The objective of this study was to describe temporal changes in key maternal and fetal factors affecting birth outcomes in Newcastle upon Tyne over three decades, 1961–1992.</p> <p>Methods</p> <p>For these descriptive analyses we used data from a population-based birth record database constructed for the historical cohort <b>Pa</b>rticulate <b>M</b>atter and <b>P</b>erinatal <b>E</b>vents <b>R</b>esearch (PAMPER) study. The PAMPER database was created using details from paper-based hospital delivery and neonatal records for all births during 1961–1992 to mothers resident in Newcastle (out of a total of 109,086 singleton births, 97,809 hospital births with relevant information). In addition to hospital records, we used other sources for data collection on births not included in the delivery and neonatal records, for death and stillbirth registrations and for validation.</p> <p>Results</p> <p>The average family size decreased mainly due to a decline in the proportion of families with 3 or more children. The distribution of mean maternal ages in all and in primiparous women was lowest in the mid 1970s, corresponding to a peak in the proportion of teenage mothers. The proportion of older mothers declined until the late 1970s (from 16.5% to 3.4%) followed by a steady increase. Mean birthweight in all and term babies gradually increased from the mid 1970s. The increase in the percentage of preterm birth paralleled a two-fold increase in the percentage of caesarean section among preterm births during the last two decades. The gap between the most affluent and the most deprived groups of the population widened over the three decades.</p> <p>Conclusion</p> <p>Key maternal and fetal factors affecting birth outcomes, such as maternal age, parity, socioeconomic status, birthweight and gestational age, changed substantially during the 32-year period, from 1961 to 1992. The availability of accurate gestational age is extremely important for correct interpretation of trends in birthweight.</p

    Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures

    Get PDF
    Since the first applications of two-photon microscopy in immunology 10 years ago, the number of studies using this advanced technology has increased dramatically. The two-photon microscope allows long-term visualization of cell motility in the living tissue with minimal phototoxicity. Using this technique, we examined brain autoantigen-specific T cell behavior in experimental autoimmune encephalitomyelitis, the animal model of human multiple sclerosis. Even before disease symptoms appear, the autoreactive T cells arrive at their target organ. There they crawl along the intraluminal surface of central nervous system (CNS) blood vessels before they extravasate. In the perivascular environment, the T cells meet phagocytes that present autoantigens. This contact activates the T cells to penetrate deep into the CNS parenchyma, where the infiltrated T cells again can find antigen, be further activated, and produce cytokines, resulting in massive immune cell recruitment and clinical disease

    Dynamic Imaging of the Effector Immune Response to Listeria Infection In Vivo

    Get PDF
    Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC. Myelomonocytic cells (MMC) swarmed around non-motile scDC forming foci from which blood flow was excluded. The depletion of scDC after foci were established resulted in a 10-fold reduction in viable Lm, while graded depletion of MMC resulted in 30–1000 fold increase in viable Lm in foci with enhanced blood flow. Effector CD8+ [CD8 superscript +] T cells at sites of infection displayed a two-tiered reduction in motility with antigen independent and antigen dependent components, including stable interactions with infected and non-infected scDC. Thus, swarming MMC contribute to control of Lm prior to development of T cell immunity by direct killing and sequestration from blood flow, while scDC appear to promote Lm survival while preferentially interacting with CD8+ [CD8 superscript +] T cells in effector sites.National Institutes of Health (U.S.) (Grant P01AI-071195

    Cell-autonomous and environmental contributions to the interstitial migration of T cells

    Get PDF
    A key to understanding the functioning of the immune system is to define the mechanisms that facilitate directed lymphocyte migration to and within tissues. The recent development of improved imaging technologies, most prominently multi-photon microscopy, has enabled the dynamic visualization of immune cells in real-time directly within intact tissues. Intravital imaging approaches have revealed high spontaneous migratory activity of T cells in secondary lymphoid organs and inflamed tissues. Experimental evidence points towards both environmental and cell-intrinsic cues involved in the regulation of lymphocyte motility in the interstitial space. Based on these data, several conceptually distinct models have been proposed in order to explain the coordination of lymphocyte migration both at the single cell and population level. These range from “stochastic” models, where chance is the major driving force, to “deterministic” models, where the architecture of the microenvironment dictates the migratory trajectory of cells. In this review, we focus on recent advances in understanding naïve and effector T cell migration in vivo. In addition, we discuss some of the contradictory experimental findings in the context of theoretical models of migrating leukocytes

    Two-photon microscopy analysis of leukocyte trafficking and motility

    Get PDF
    During the last several years, live tissue imaging, in particular using two-photon laser microscopy, has advanced our understanding of leukocyte trafficking mechanisms. Studies using this technique are revealing distinct molecular requirements for leukocyte migration in different tissue environments. Also emerging from the studies are the ingenious infrastructures for leukocyte trafficking, which are produced by stromal cells. This review summarizes the recent imaging studies that provided novel mechanistic insights into in vivo leukocyte migration essential for immunosurveillance
    corecore