73 research outputs found
Recommended from our members
Interpretation of particle number size distributions measured across an urban area during the FASTER campaign
Abstract. Particle number size distributions have been measured simultaneously by scanning mobility particle sizers (SMPSs) at five sites in central London for a 1 month campaign in January–February 2017. These measurements were accompanied by condensation particle counters (CPCs) to measure total particle number count at four of the sites and Aethalometersmeasuringblackcarbon(BC)atfivesites.The spatialdistributionandinter-relationshipsoftheparticlesize distribution and SMPS total number counts with CPC total number counts and black carbon measurements have been analysed in detail as well as variations in the size distributions. One site (Marylebone Road) was in a street canyon with heavy traffic, one site (Westminster University) was on a rooftop adjacent to the Marylebone Road sampler, and a further sampler was located at Regent’s University within a major park to the north of Marylebone Road. A fourth sampler was located nearby at 160m above ground level on the BT tower and a fifth sampler was located 4km to the west of the main sampling region at North Kensington. Consistent with earlier studies it was found that the mode in the size distribution had shifted to smaller sizes at the Regent’s University (park) site, the mean particle shrinkage rate being 0.04nms−1 with slightly lower values at low wind speeds and some larger values at higher wind speeds. There was evidence of complete evaporation of the semi-volatile nucleation mode under certain conditions at the elevated BT Tower site. While the SMPS total count and black carbon showed typical traffic-dominated diurnal profiles, the
CPC count data typically peaked during night-time as did CPC/SMPS and CPC/BC ratios. This is thought to be due to the presence of high concentrations of small particles (2.5–15nm diameter) probably arising from condensational growth from traffic emissions during the cooler night-time conditions. Such behaviour was most marked at the Regent’s University and Westminster University sites and less so at Marylebone Road, while at the elevated BT Tower site the ratio of particle number(CPC) to black carbon peaked during the morning rush hour and not at night-time, unlike the other sites. An elevation in nucleation mode particles associated with winds from the west and WSW sector was concluded to result from emissions from London Heathrow Airport, despite a distance of 22km from the central London sites
No good surprises: intending lecturers' preconceptions and initial experiences of further education
Current initiatives to promote lifelong learning and a broader inclusiveness in post-16 education have focused attention on further education (FE). The article examines the experiences and reactions of 41 intending lecturers studying full-time for a Postgraduate Certificate in Further Education and Training (PGCET), as they enter FE colleges on teaching practice and encounter FE students for the first time. It argues that the sector may have something to learn from the contrast between these intending lecturers' expectations and their subsequent experiences, and that attempts to address problems which are endemic within the current FE sector by initiatives to improve teacher competence, such as the Further Education National Training Organisation (FENTO)'s recently introduced FE teacher training standards, are inadequate and misdirected
Does implementation matter if comprehension is lacking? A qualitative investigation into perceptions of advance care planning in people with cancer
Purpose: While advance care planning holds promise, uptake is variable and it is unclear how well people engage with or comprehend advance care planning. The objective of this study was to explore how people with cancer comprehended Advance Care Plans and examine how accurately advance care planning documentation represented patient wishes.
Methods: This study used a qualitative descriptive design. Data collection comprised interviews and an examination of participants’ existing advance care planning documentation. Participants included those who had any diagnosis of cancer with an advance care plan recorded: Refusal of Treatment Certificate; Statement of Choices; and/or Enduring Power of Attorney (Medical Treatment) at one cancer treatment centre.
Results: Fourteen participants were involved in the study. Twelve participants were female (86%). The mean age was 77 (range: 61-91) and participants had completed their advance care planning documentation between 8 and 72 weeks prior to the interview (mean 33 weeks). Three themes were evident from the data: Incomplete advance care planning understanding and confidence; Limited congruence for attitude and documentation; Advance care planning can enable peace of mind. Complete advance care planning understanding was unusual; most participants demonstrated partial comprehension of their own advance care plan, and some indicated very limited understanding. Participants’ attitudes and their written document congruence was limited, but advance care planning was seen as helpful.
Conclusions: This study highlighted advance care planning was not a completely accurate representation of patient wishes. There is opportunity to improve how patients comprehend their own advance care planning documentation
Road Traffic Emissions Lead to Much Enhanced New Particle Formation through Increased Growth Rates
New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of >50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.</p
Measurement report: Interpretation of wide-range particulate matter size distributions in Delhi
Delhi is one of the world's most polluted cities, with very high concentrations of airborne particulate matter. However, little is known about the factors controlling the characteristics of wide-range particle number size distributions. Here, new measurements are reported from three field campaigns conducted in winter and pre-monsoon and post-monsoon seasons at the Indian Institute of Technology campus in the south of the city. Particle number size distributions were measured simultaneously, using a scanning mobility particle sizer and a GRIMM optical particle monitor, covering 15 nm to >10 μm diameter. The merged, wide-range size distributions were categorized into the following five size ranges: nucleation (15-20 nm), Aitken (20-100 nm), accumulation (100 nm-1 μm), large fine (1-2.5 μm), and coarse (2.5-10 μm) particles. The ultrafine fraction (15-100 nm) accounts for about 52 % of all particles by number (PN10 is the total particle number from 15 nm to 10 μm) but just 1 % by PM10 volume (PV10 is the total particle volume from 15 nm to 10 μm). The measured size distributions are markedly coarser than most from other parts of the world but are consistent with earlier cascade impactor data from Delhi. Our results suggest substantial aerosol processing by coagulation, condensation, and water uptake in the heavily polluted atmosphere, which takes place mostly at nighttime and in the morning hours. Total number concentrations are highest in winter, but the mode of the distribution is largest in the post-monsoon (autumn) season. The accumulation mode particles dominate the particle volume in autumn and winter, while the coarse mode dominates in summer. Polar plots show a huge variation between both size fractions in the same season and between seasons for the same size fraction. The diurnal pattern of particle numbers is strongly reflective of a road traffic influence upon concentrations, especially in autumn and winter, although other sources, such as cooking and domestic heating, may influence the evening peak. There is a clear influence of diesel traffic at nighttime, when it is permitted to enter the city, and also indications in the size distribution data of a mode < 15 nm, which is probably attributable to CNG/LPG vehicles. New particle formation appears to be infrequent and is, in this dataset, limited to 1 d in the summer campaign. Our results reveal that the very high emissions of airborne particles in Delhi, particularly from traffic, determine the variation in particle number size distributions
Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard
19 pages, 8 figures,1 table, 1 appendix.-- Data availability: The APS data can be accessed from https://doi.org/10.5281/zenodo.3961473 (Traversi et al., 2020). The absorption coefficient data are available upon request from Gilardoni et al. (2020). Data supporting this publication can be accessed upon request from the corresponding authorsUnderstanding aerosol–cloud–climate interactions in the Arctic is key to predicting the climate in this rapidly changing region. Whilst many studies have focused on submicrometer aerosol (diameter less than 1 µm), relatively little is known about the supermicrometer aerosol (diameter above 1 µm). Here, we present a cluster analysis of multiyear (2015–2019) aerodynamic volume size distributions, with diameter ranging from 0.5 to 20 µm, measured continuously at the Gruvebadet Observatory in the Svalbard archipelago. Together with aerosol chemical composition data from several online and offline measurements, we apportioned the occurrence of the coarse-mode aerosols during the study period (mainly from March to October) to anthropogenic (two sources, 27 %) and natural (three sources, 73 %) origins. Specifically, two clusters are related to Arctic haze with high levels of black carbon, sulfate and accumulation mode (0.1–1 µm) aerosol. The first cluster (9 %) is attributed to ammonium sulfate-rich Arctic haze particles, whereas the second one (18 %) is attributed to larger-mode aerosol mixed with sea salt. The three natural aerosol clusters were open-ocean sea spray aerosol (34 %), mineral dust (7 %) and an unidentified source of sea spray-related aerosol (32 %). The results suggest that sea-spray-related aerosol in polar regions may be more complex than previously thought due to short- and long-distance origins and mixtures with Arctic haze, biogenic and likely blowing snow aerosols. Studying supermicrometer natural aerosol in the Arctic is imperative for understanding the impacts of changing natural processes on Arctic aerosoThis research has been supported by the Natural Environment Research Council (grant no. NE/S00579X/1). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe
Evaluation of isoprene nitrate chemistry in detailed chemical mechanisms
Isoprene nitrates are important chemical species in the atmosphere which contribute to the chemical cycles that form ozone and secondary organic aerosol (SOA) with implications for climate and air quality. Accurate chemical mechanisms are important for the prediction of the atmospheric chemistry of species such as isoprene nitrates in chemical models. In recent years, studies into the chemistry of isoprene nitrates have resulted in the development of a range of mechanisms available for use in the simulation of atmospheric isoprene oxidation. This work uses a 0-D chemical box model to assess the ability of three chemically detailed mechanisms to predict the observed diurnal profiles of four groups of isoprene-derived nitrates in the summertime in the Chinese megacity of Beijing. An analysis of modelled C5H9NO5 isomers, including isoprene hydroperoxy nitrate (IPN) species, highlights the significant contribution of non-IPN species to the C5H9NO5 measurement, including the potentially large contribution of nitrooxy hydroxyepoxide (INHE). The changing isomer distribution of isoprene hydroxy nitrates (IHNs) derived from OH-initiated and NO3-initiated chemistry is discussed, as is the importance of up-To-date alkoxy radical chemistry for the accurate prediction of isoprene carbonyl nitrate (ICN) formation. All mechanisms under-predicted C4H7NO5 as predominately formed from the major isoprene oxidation products, methyl vinyl ketone (MVK) and methacrolein (MACR). This work explores the current capability of existing chemical mechanisms to accurately represent isoprene nitrate chemistry in urban areas significantly impacted by anthropogenic and biogenic chemical interactions. It suggests considerations to be taken when investigating isoprene nitrates in ambient scenarios, investigates the potential impact of varying isomer distributions on iodide chemical ionisation mass spectrometry (I-CIMS) calibrations, and makes some proposals for the future development of isoprene mechanisms
Funding Advantage and Market Discipline in the Canadian Banking Sector
We employ a comprehensive data set and a variety of methods to provide evidence on the magnitude of large banks' funding advantage in Canada, and on the extent to which market discipline exists across different securities issued by the Canadian banks. The banking sector in Canada provides a unique setting in which to examine market discipline along with the prospects of proposed reforms, because Canada has no history of government bailouts. Our results suggest that large banks likely have a funding advantage over small banks after controlling for bank-specific and market risk factors. Working with hand-collected market data on debt issues by large banks, we also find that market discipline exists for subordinated debt and not for senior debt
Brief of Amici Curiae 56 Professors of Law and Economics in Support of Petition of Writ of Certiorari
28 U.S.C. § 1400(b) provides that a defendant in a patent case may be sued where the defendant is incorporated or has a regular and established place of business and has infringed the patent. This Court made clear in Fourco Glass Co. v. Transmirra Prods. Corp., 353 U.S. 222, 223 (1957), that those were the only permissible venues for a patent case. But the Federal Circuit has rejected Fourco and the plain meaning of § 1400(b), instead permitting a patent plaintiff to file suit against a defendant anywhere there is personal jurisdiction over that defendant. The result has been rampant forum shopping, particularly by patent trolls. 44% of 2015 patent lawsuits were filed in a single district: the Eastern District of Texas, a forum with plaintiff-friendly rules and practices, and where few of the defendants are incorporated or have established places of business. And an estimated 86% of 2015 patent cases were filed somewhere other than the jurisdictions specified in the statute. Colleen V. Chien & Michael Risch, Recalibrating Patent Venue, Santa Clara Univ. Legal Studies Research Paper No. 10-1 (Sept. 1, 2016), Table 3. This Court should grant certiorari to review the meaning of 28 U.S.C. § 1400(b) because the Federal Circuit’s dubious interpretation of the statute plays an outsized and detrimental role, both legally and economically, in the patent system
- …