818 research outputs found

    The Critical Endpoint of Bootstrap and Lattice QCD Matter

    Full text link
    The critical sector of strong interactions at high temperatures is explored in the frame of two complementary approaches: Statistical Bootstrap for the hadronic phase and Lattice QCD for the Quark-Gluon partition function. A region of thermodynamic instability of hadronic matter was found, as a direct prediction of Statistical Bootstrap. As a result, critical endpoint solutions for nonzero chemical potential were traced in the phase diagram of strongly interacting matter. These solutions are compared with recent lattice QCD results and their proximity to the freeze-out points of experiments with nuclei at high energies is also discussed.Comment: 23 pages, 8 figure

    On Superspace Chern-Simons-like Terms

    Full text link
    We search for superspace Chern-Simons-like higher-derivative terms in the low energy effective actions of supersymmetric theories in four dimensions. Superspace Chern-Simons-like terms are those gauge-invariant terms which cannot be written solely in terms of field strength superfields and covariant derivatives, but in which a gauge potential superfield appears explicitly. We find one class of such four-derivative terms with N=2 supersymmetry which, though locally on the Coulomb branch can be written solely in terms of field strengths, globally cannot be. These terms are classified by certain Dolbeault cohomology classes on the moduli space. We include a discussion of other examples of terms in the effective action involving global obstructions on the Coulomb branch.Comment: 23 pages; a reference and an author email correcte

    DDπD^*D\pi and BBπB^*B\pi couplings in QCD

    Get PDF
    We calculate the DDπD^*D\pi and BBπB^*B\pi couplings using QCD sum rules on the light-cone. In this approach, the large-distance dynamics is incorporated in a set of pion wave functions. We take into account two-particle and three-particle wave functions of twist 2, 3 and 4. The resulting values of the coupling constants are gDDπ=12.5±1g_{D^*D\pi}= 12.5\pm 1 and gBBπ=29±3g_{B^*B\pi}= 29\pm 3 . From this we predict the partial width \Gamma (D^{*+} \ra D^0 \pi^+ )=32 \pm 5~ keV . We also discuss the soft-pion limit of the sum rules which is equivalent to the external axial field approach employed in earlier calculations. Furthermore, using gBBπg_{B^*B\pi} and gDDπg_{D^*D\pi} the pole dominance model for the B \ra \pi and D\ra \pi semileptonic form factors is compared with the direct calculation of these form factors in the same framework of light-cone sum rules.Comment: 27 pages (LATEX) +3 figures enclosed as .uu file MPI-PhT/94-62 , CEBAF-TH-94-22, LMU 15/9

    Bootstraping the QCD Critical Point

    Full text link
    It is shown that hadronic matter formed at high temperatures, according to the prescription of the statistical bootstrap principle, develops a critical point at nonzero baryon chemical potential. The location of the critical point in the phase diagram, however, depends on the detailed knowledge of the partition function of the deconfined phase, near the critical line. In a simplified version of the quark-gluon partition function, the resulting location of the critical point is compared with the solutions of other approaches and in particular with the results of lattice QCD. The proximity of our solution to the freeze-out area in heavy-ion experiments is also discussed.Comment: 10 pages, 3 figures in 4 file

    QCD Calculation of the Bπ,KB \rightarrow \pi,K Form Factors

    Full text link
    We calculate the form factors for the heavy-to-light transitions Bπ,KB\rightarrow \pi,K by means of QCD sum rules using π\pi and KK light-cone wave functions. Higher twist contributions as well as gluonic corrections are taken into account. The sensitivity to the shape of the leading-twist wave functions and effects of SU(3)-breaking are discussed. The results are compared with quark model predictions and with the results from QCD sum rules for three-point correlators.Comment: 13 pages +5 figures available upon request , LaTeX , CERN-TH.6880/93, MPI-Ph/93-32, LMU-07/9

    Logarithmic scaling in gauge/string correspondence

    Full text link
    We study anomalous dimensions of (super)conformal Wilson operators at weak and strong coupling making use of the integrability symmetry on both sides of the gauge/string correspondence and elucidate the origin of their single-logarithmic behavior for long operators/strings in the limit of large Lorentz spin. On the gauge theory side, we apply the method of the Baxter Q-operator to identify different scaling regimes in the anomalous dimensions in integrable sectors of (supersymmetric) Yang-Mills theory to one-loop order and determine the values of the Lorentz spin at which the logarithmic scaling sets in. We demonstrate that the conventional semiclassical approach based on the analysis of the distribution of Bethe roots breaks down in this domain. We work out an asymptotic expression for the anomalous dimensions which is valid throughout the entire region of variation of the Lorentz spin. On the string theory side, the logarithmic scaling occurs when two most distant points of the folded spinning string approach the boundary of the AdS space. In terms of the spectral curve for the classical string sigma model, the same configuration is described by an elliptic curve with two branching points approaching values determined by the square root of the 't Hooft coupling constant. As a result, the anomalous dimensions cease to obey the BMN scaling and scale logarithmically with the Lorentz spin.Comment: 37 pages, 4 figure

    Higher-Derivative Terms in N=2 Supersymmetric Effective Actions

    Full text link
    We show how to systematically construct higher-derivative terms in effective actions in harmonic superspace despite the infinite redundancy in their description due to the infinite number of auxiliary fields. Making an assumption about the absence of certain superspace Chern-Simons-like terms involving vector multiplets, we write all 3- and 4-derivative terms on Higgs, Coulomb, and mixed branches. Among these terms are several with only holomorphic dependence on fields, and at least one satisfies a non-renormalization theorem. These holomorphic terms include a novel 3-derivative term on mixed branches given as an integral over 3/4 of superspace. As an illustration of our method, we search for Wess-Zumino terms in the low energy effective action of N=2 supersymmetric QCD. We show that such terms occur only on mixed branches. We also present an argument showing that the combination of space-time locality with supersymmetry implies locality in the anticommuting superspace coordinates of for unconstrained superfields.Comment: 30 pages. Added references and simplified final form of WZ ter

    Ioffe-time distributions instead of parton momentum distributions in description of deep inelastic scattering

    Get PDF
    We argue that parton distributions in coordinate space provide a more natural object for nonperturbative methods compared to the usual momentum distributions in which the physics of different longitudinal distances is being mixed. To illustrate the advantages of the coordinate space formulation, we calculate the coordinate space distributions for valence quarks in the proton using the QCD sum rule approach. A remarkable agreement is found between the calculated and the experimentally measured u-quark distribution up to light-cone distances Δ=Δ0Δ3\Delta^- = \Delta^0 - \Delta^3 of order 1\sim 1 fm in the proton rest frame. The calculation for valence d quarks gives much worse results; the reasons for this discrepancy are discussed.Comment: 24 pages plus 13 pages with figures, requires epsf.sty, revised version to appear in Phys.Rev.
    corecore