11 research outputs found

    Physical, chemical and microbiological aspects during the dry and rainy seasons in a pond covered by macrophyte used in aquaculture water supply

    No full text
    AIM: The water quality of a pond covered by macrophytes and used as a water supply for aquaculture was evaluated during the dry and rainy seasons; METHODS: Six points were established for water sampling, at water inflow and outflow. Samplings were carried out monthly between June 2008 and May 2009; RESULTS: Inflow points P1, P2 and P3 in the pond had higher nutrient concentrations and high trophic rates. Moreover, capybaras in the area caused sediment suspension and an increase in fecal coliforms. There was significant difference (p < 0.05) in the concentrations of nutrients in water between the dry and rainy seasons. The outflow of water caused by rain carried the material around the pond directly into the water; CONCLUSIONS: The system studied was influenced by rain and lack of adequate management of the surrounding area. Water quality was deteriorated by increase in nutrient concentrations, fecal coliforms and reduction of dissolved oxygen in the water during the rainy season. This was due to allochthonous material from the area surrounding the pond that affected negatively the supply system

    Diversity in Mediterranean farm ponds: trade-offs and synergies between irrigation modernisation and biodiversity conservation

    No full text
    1. Agricultural intensification has caused dramatic biodiversity loss in many agricultural landscapes over the last century. Here, we investigated whether new types of farm ponds (made of artificial substrata) in intensive systems and natural-substratum ponds in traditional farming systems differ in their value for aquatic biodiversity conservation. 2. We analysed the main patterns of environmental variation, compared a-, b- and c-diversity of macroinvertebrates between ponds types and evaluated the role of submerged aquatic vegetation (SAV). Generalised additive models (GAM) were used to analyse the relationships of a- and b-diversity with environmental predictors, and variation partitioning to separate the effect of environmental and spatial characteristics on the variation in macroinvertebrate assemblages. Moran's eigenvector maps (MEMs) were used to define spatial variables. 3. A principal coordinate analysis (PCoA) detected a primary environmental gradient that separated nutrient-rich ponds from those dominated by SAV; a secondary morphometric gradient distinguished natural-substratum ponds, with large surface area and structural complexity, from artificial-substratum ponds with steeper slopes. Natural-substratum ponds had almost twice the a- and c-diversity of artificial-substratum ponds, and diversity significantly increased when SAV was present, particularly in artificial-substratum ponds. Total phosphorus (TP) strongly contributed to explain the patterns in diversity, while SAV was a significant predictor of assemblage composition and diversity. GAMs revealed optima of both a-diversity at intermediate SAV covers and b-diversity at intermediate–high TP concentrations. 4. These findings have important implications for conservation planning. Adaptation of artificialsubstratum ponds by adding natural substratum and smoothing the gradient of pond margins would improve their conservation value. Development of SAV with occasional harvests and certain cautionary measures to control nutrient levels may also improve both the agronomical and environmental function of ponds

    Disturbance and the role of refuges in mediterranean climate streams

    Full text link
    Refuges protect plant and animal populations from disturbance. Knowledge of refuges from disturbance in mediterranean climate rivers (med-rivers) has increased the last decade. We review disturbance processes and their relationship to refuges in streams in mediterranean climate regions (med-regions). Med-river fauna show high endemicity and their populations are often exposed to disturbance; hence the critical importance of refuges during (both seasonal and supraseasonal) disturbances. Disturbance pressures are increasing in med-regions, in particular from climatic change, salinisation, sedimentation, water extraction, hydropower generation, supraseasonal drought, and wildfire. Med-rivers show annual cycles of constrained precipitation and predictable seasonal drying, causing the biota to depend on seasonal refuges, in particular, those that are spatially predictable. This creates a spatial and temporal mosaic of inundation that determines habitat extent and refuge function. Refuges of sufficient size and duration to maintain populations, such as perennially flowing reaches, sustain biodiversity and may harbour relict populations, particularly during increasing aridification, where little other suitable habitat remains in landscapes. Therefore, disturbances that threaten perennial flows potentially cascade disproportionately to reduce regional scale biodiversity in med-regions. Conservation approaches for med-river systems need to conserve both refuges and refuge connectivity, reduce the impact of anthropogenic disturbances and sustain predictable, seasonal flow patterns
    corecore