126 research outputs found
Detecting conservation benefits of marine reserves on remote reefs of the northern GBR
© 2017 Castro-Sanguino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The Great Barrier Reef Marine Park (GBRMP) is the largest network of marine reserves in the world, yet little is known of the efficacy of no-fishing zones in the relatively lightly-exploited remote parts of the system (i.e., northern regions). Here, we find that the detection of reserve effects is challenging and that heterogeneity in benthic habitat composition, specifically branching coral cover, is one of the strongest driving forces of fish assemblages. As expected, the biomass of targeted fish species was generally greater (up to 5-fold) in no-take zones than in fished zones, but we found no differences between the two forms of no-take zone: ‘no-take’ versus ‘no-entry’. Strong effects of zoning were detected in the remote Far-North inshore reefs and more central outer reefs, but surprisingly fishing effects were absent in the less remote southern locations. Moreover, the biomass of highly targeted species was nearly 2-fold greater in fished areas of the Far-North than in any reserve (no-take or no-entry) further south. Despite high spatial variability in fish biomass, our results suggest that fishing pressure is greater in southern areas and that poaching within reserves may be common. Our results also suggest that fishers ‘fish the line’ as stock sizes in exploited areas decreased near larger no-take zones. Interestingly, an analysis of zoning effects on small, non-targeted fishes appeared to suggest a top-down effect from mesopredators, but was instead explained by variability in benthic composition. Thus, we demonstrate the importance of including appropriate covariates when testing for evidence of trophic cascades and reserve successes or failures
Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease
Modern human environments are vastly different from those of our forebears. Rapidly advancing technology in transportation, communications, workplaces, and home entertainment confer a wealth of benefits, but increasingly come with costs to human health. Sedentary behavior—too much sitting as distinct from too little physical activity—contributes adversely to cardiometabolic health outcomes and premature mortality. Findings from observational epidemiology have been synthesized in meta-analyses, and evidence is now shifting into the realm of experimental trials with the aim of identifying novel mechanisms and potential causal relationships. We discuss recent observational and experimental evidence that makes a compelling case for reducing and breaking up prolonged sitting time in both the primary prevention and disease management contexts. We also highlight future research needs, the opportunities for developing targeted interventions, and the potential of population-wide initiatives designed to address too much sitting as a health risk
Reduced Stability and Increased Dynamics in the Human Proliferating Cell Nuclear Antigen (PCNA) Relative to the Yeast Homolog
Proliferating Cell Nuclear Antigen (PCNA) is an essential factor for DNA replication and repair. PCNA forms a toroidal, ring shaped structure of 90 kDa by the symmetric association of three identical monomers. The ring encircles the DNA and acts as a platform where polymerases and other proteins dock to carry out different DNA metabolic processes. The amino acid sequence of human PCNA is 35% identical to the yeast homolog, and the two proteins have the same 3D crystal structure. In this report, we give evidence that the budding yeast (sc) and human (h) PCNAs have highly similar structures in solution but differ substantially in their stability and dynamics. hPCNA is less resistant to chemical and thermal denaturation and displays lower cooperativity of unfolding as compared to scPCNA. Solvent exchange rates measurements show that the slowest exchanging backbone amides are at the β-sheet, in the structure core, and not at the helices, which line the central channel. However, all the backbone amides of hPCNA exchange fast, becoming undetectable within hours, while the signals from the core amides of scPCNA persist for longer times. The high dynamics of the α-helices, which face the DNA in the PCNA-loaded form, is likely to have functional implications for the sliding of the PCNA ring on the DNA since a large hole with a flexible wall facilitates the establishment of protein-DNA interactions that are transient and easily broken. The increased dynamics of hPCNA relative to scPCNA may allow it to acquire multiple induced conformations upon binding to its substrates enlarging its binding diversity
A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins
International audienceZinc is the second most abundant metal ion incorporated in proteins, and is in many cases a crucial component of protein three-dimensional structures. Zinc ions are frequently coordinated by cysteine and histidine residues. Whereas cysteines bind to zinc via their unique Sγ atom, histidines can coordinate zinc with two different coordination modes, either Nδ1 or Nε2 is coordinating the zinc ion. The determination of this coordination mode is crucial for the accurate structure determination of a histidine-containing zinc-binding site by NMR. NMR chemical shifts contain a vast amount of information on local electronic and structural environments and surprisingly their utilization for the determination of the coordination mode of zinc-ligated histidines has been limited so far to 15N nuclei. In the present report, we observed that the 13C chemical shifts of aromatic carbons in zinc-ligated histidines represent a reliable signature of their coordination mode. Using a statistical analysis of 13C chemical shifts, we show that 13Cδ2 chemical shift is sensitive to the histidine coordination mode and that the chemical shift difference δ{13Cε1} - δ{13Cδ2} provides a reference-independent marker of this coordination mode. The present approach allows the direct determination of the coordination mode of zinc-ligated histidines even with non-isotopically enriched protein samples and without any prior structural information
Integrative miRNA-mRNA Profiling of Adipose Tissue Unravels Transcriptional Circuits Induced by Sleep Fragmentation
Obstructive sleep apnea (OSA) is a prevalent condition and strongly associated with metabolic disorders. Sleep fragmentation (SF) is a major consequence of OSA, but its contribution to OSA-related morbidities is not known. We hypothesized that SF causes specific perturbations in transcriptional networks of visceral fat cells, leading to systemic metabolic disturbances. We simultaneously profiled visceral adipose tissue mRNA and miRNA expression in mice exposed to 6 hours of SF during sleep, and developed a new computational framework based on gene set enrichment and network analyses to merge these data. This approach leverages known gene product interactions and biologic pathways to interrogate large-scale gene expression profiling data. We found that SF induced the activation of several distinct pathways, including those involved in insulin regulation and diabetes. Our integrative methodology identified putative controllers and regulators of the metabolic response during SF. We functionally validated our findings by demonstrating altered glucose and lipid homeostasis in sleep-fragmented mice. This is the first study to link sleep fragmentation with widespread disruptions in visceral adipose tissue transcriptome, and presents a generalizable approach to integrate mRNA-miRNA information for systematic mapping of regulatory networks
Developmental Hippocampal Neuroplasticity in a Model of Nicotine Replacement Therapy during Pregnancy and Breastfeeding
The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT) as a smoking cessation method during pregnancy.In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG) of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP).Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation) and glutamatergic electrophysiological activity were measured in pups.Juvenile (P15) and adolescent (P41) offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups.These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia
To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles
First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz
- …
