38 research outputs found

    Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-wave Optical Transient Observer (GOTO-4)

    Get PDF
    We report the results of optical follow-up observations of 29 gravitational-wave (GW) triggers during the first half of the LIGO–Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope configuration (GOTO-4). While no viable electromagnetic (EM) counterpart candidate was identified, we estimate our 3D (volumetric) coverage using test light curves of on- and off-axis gamma-ray bursts and kilonovae. In cases where the source region was observable immediately, GOTO-4 was able to respond to a GW alert in less than a minute. The average time of first observation was 8.79 h after receiving an alert (9.90 h after trigger). A mean of 732.3 square degrees were tiled per event, representing on average 45.3 per cent of the LVC probability map, or 70.3 per cent of the observable probability. This coverage will further improve as the facility scales up alongside the localization performance of the evolving GW detector network. Even in its 4-telescope prototype configuration, GOTO is capable of detecting AT2017gfo-like kilonovae beyond 200 Mpc in favourable observing conditions. We cannot currently place meaningful EM limits on the population of distant (⁠D^L=1.3 Gpc) binary black hole mergers because our test models are too faint to recover at this distance. However, as GOTO is upgraded towards its full 32-telescope, 2 node (La Palma & Australia) configuration, it is expected to be sufficiently sensitive to cover the predicted O4 binary neutron star merger volume, and will be able to respond to both northern and southern triggers

    Cell-Autonomous Alterations in Dendritic Arbor Morphology and Connectivity Induced by Overexpression of MeCP2 in Xenopus Central Neurons In Vivo

    Get PDF
    Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Mutations in the MeCP2 gene have been linked to Rett syndrome, a severe X-linked progressive neurodevelopmental disorder, and one of the most common causes of mental retardation in females. MeCP2 duplication and triplication have also been found to affect brain development, indicating that both loss of function and gain in MeCP2 dosage lead to similar neurological phenotypes. Here, we used the Xenopus laevis visual system as an in vivo model to examine the consequence of increased MeCP2 expression during the morphological maturation of individual central neurons in an otherwise intact brain. Single-cell overexpression of wild-type human MeCP2 was combined with time-lapse confocal microscopy imaging to study dynamic mechanisms by which MeCP2 influences tectal neuron dendritic arborization. Analysis of neurons co-expressing DsRed2 demonstrates that MeCP2 overexpression specifically interfered with dendritic elaboration, decreasing the rates of branch addition and elimination over a 48 hour observation period. Moreover, dynamic analysis of neurons co-expressing wt-hMeCP2 and PSD95-GFP revealed that even though neurons expressing wt-hMeCP2 possessed significantly fewer dendrites and simpler morphologies than control neurons at the same developmental stage, postsynaptic site density in wt-hMeCP2-expressing neurons was similar to controls and increased at a rate higher than controls. Together, our in vivo studies support an early, cell-autonomous role for MeCP2 during the morphological differentiation of neurons and indicate that perturbations in MeCP2 gene dosage result in deficits in dendritic arborization that can be compensated, at least in part, by synaptic connectivity changes

    Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4)

    Get PDF
    We report the results of optical follow-up observations of 29 gravitational-wave (GW) triggers during the first half of the LIGO-Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope configuration (GOTO-4). While no viable electromagnetic (EM) counterpart candidate was identified, we estimate our 3D (volumetric) coverage using test light curves of on- and off-axis gamma-ray bursts and kilonovae. In cases where the source region was observable immediately, GOTO-4 was able to respond to a GW alert in less than a minute. The average time of first observation was 8.79 h after receiving an alert (9.90 h after trigger). A mean of 732.3 square degrees were tiled per event, representing on average 45.3 per cent of the LVC probability map, or 70.3 per cent of the observable probability. This coverage will further improve as the facility scales up alongside the localization performance of the evolving GW detector network. Even in its 4-telescope prototype configuration, GOTO is capable of detecting AT2017gfo-like kilonovae beyond 200 Mpc in favourable observing conditions. We cannot currently place meaningful EM limits on the population of distant ((D) over cap (L) = 1.3 Gpc) binary black hole mergers because our test models are too faint to recover at this distance. However, as GOTO is upgraded towards its full 32-telescope, 2 node (La Palma & Australia) configuration, it is expected to be sufficiently sensitive to cover the predicted O4 binary neutron star merger volume, and will be able to respond to both northern and southern triggers
    corecore