31 research outputs found

    Detecting conservation benefits of marine reserves on remote reefs of the northern GBR

    Get PDF
    © 2017 Castro-Sanguino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The Great Barrier Reef Marine Park (GBRMP) is the largest network of marine reserves in the world, yet little is known of the efficacy of no-fishing zones in the relatively lightly-exploited remote parts of the system (i.e., northern regions). Here, we find that the detection of reserve effects is challenging and that heterogeneity in benthic habitat composition, specifically branching coral cover, is one of the strongest driving forces of fish assemblages. As expected, the biomass of targeted fish species was generally greater (up to 5-fold) in no-take zones than in fished zones, but we found no differences between the two forms of no-take zone: ‘no-take’ versus ‘no-entry’. Strong effects of zoning were detected in the remote Far-North inshore reefs and more central outer reefs, but surprisingly fishing effects were absent in the less remote southern locations. Moreover, the biomass of highly targeted species was nearly 2-fold greater in fished areas of the Far-North than in any reserve (no-take or no-entry) further south. Despite high spatial variability in fish biomass, our results suggest that fishing pressure is greater in southern areas and that poaching within reserves may be common. Our results also suggest that fishers ‘fish the line’ as stock sizes in exploited areas decreased near larger no-take zones. Interestingly, an analysis of zoning effects on small, non-targeted fishes appeared to suggest a top-down effect from mesopredators, but was instead explained by variability in benthic composition. Thus, we demonstrate the importance of including appropriate covariates when testing for evidence of trophic cascades and reserve successes or failures

    Quantifying Relative Diver Effects in Underwater Visual Censuses

    Get PDF
    Diver-based Underwater Visual Censuses (UVCs), particularly transect-based surveys, are key tools in the study of coral reef fish ecology. These techniques, however, have inherent problems that make it difficult to collect accurate numerical data. One of these problems is the diver effect (defined as the reaction of fish to a diver). Although widely recognised, its effects have yet to be quantified and the extent of taxonomic variation remains to be determined. We therefore examined relative diver effects on a reef fish assemblage on the Great Barrier Reef. Using common UVC methods, the recorded abundance of seven reef fish groups were significantly affected by the ongoing presence of SCUBA divers. Overall, the diver effect resulted in a 52% decrease in the mean number of individuals recorded, with declines of up to 70% in individual families. Although the diver effect appears to be a significant problem, UVCs remain a useful approach for quantifying spatial and temporal variation in relative fish abundances, especially if using methods that minimise the exposure of fishes to divers. Fixed distance transects using tapes or lines deployed by a second diver (or GPS-calibrated timed swims) would appear to maximise fish counts and minimise diver effects

    Habitat associations of juvenile versus adult butterflyfishes

    Get PDF
    Author Posting. © Springer-Verlag, 2008. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Coral Reefs 27 (2008): 541-551, doi:10.1007/s00338-008-0357-8.Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilise distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.This research was funded by a JCU Program Grant to MSP, while MLB was supported by an NSF (USA) Graduate Research Fellowship

    An Assessment of Mobile Predator Populations along Shallow and Mesophotic Depth Gradients in the Hawaiian Archipelago.

    Get PDF
    Large-bodied coral reef roving predators (sharks, jacks, snappers) are largely considered to be depleted around human population centers. In the Hawaiian Archipelago, supporting evidence is primarily derived from underwater visual censuses in shallow waters (=30?m). However, while many roving predators are present or potentially more abundant in deeper strata (30-100?m+), distributional information remains sparse. To partially fill that knowledge gap, we conducted surveys in the remote Northwestern Hawaiian Islands (NWHI) and populated Main Hawaiian Islands (MHI) from 2012-2014 using baited remote underwater stereo-video. Surveys between 0-100?m found considerable roving predator community dissimilarities between regions, marked conspicuous changes in species abundances with increasing depth, and largely corroborated patterns documented during shallow water underwater visual censuses, with up to an order of magnitude more jacks and five times more sharks sampled in the NWHI compared to the MHI. Additionally, several species were significantly more abundant and larger in mesophotic versus shallow depths, which remains particularly suggestive of deep-water refugia effects in the MHI. Stereo-video extends the depth range of current roving predator surveys in a more robust manner than was previously available, and appears to be well-suited for large-scale roving predator work in the Hawaiian Archipelago

    Cross-scale habitat structure driven by coral species composition on tropical reefs

    Get PDF
    The availability of habitat structure across spatial scales can determine ecological organization and resilience. However, anthropogenic disturbances are altering the abundance and composition of habitat-forming organisms. How such shifts in the composition of these organisms alter the physical structure of habitats across ecologically important scales remains unclear. At a time of unprecedented coral loss and homogenization of coral assemblages globally, we investigate the inherent structural complexity of taxonomically distinct reefs, across fve ecologically relevant scales of measurement (4–64cm). We show that structural complexity was infuenced by coral species composition, and was not a simple function of coral cover on the studied reefs. However, inter-habitat variation in structural complexity changed with scale. Importantly, the scales at which habitat structure was available also varied among habitats. Complexity at the smallest, most vulnerable scale (4cm) varied the most among habitats, which could have inferences for as much as half of all reef fshes which are small-bodied and refuge dependent for much of their lives. As disturbances continue and species shifts persist, the future of these ecosystems may rely on a greater concern for the composition of habitat-building species and prioritization of particular confgurations for protection of maximal cross-scale habitat structural complexity

    fisheries and tourism social economic and ecological trade offs in coral reef systems

    Get PDF
    Coastal communities are exerting increasingly more pressure on coral reef ecosystem services in the Anthropocene. Balancing trade-offs between local economic demands, preservation of traditional values, and maintenance of both biodiversity and ecosystem resilience is a challenge for reef managers and resource users. Consistently, growing reef tourism sectors offer more lucrative livelihoods than subsistence and artisanal fisheries at the cost of traditional heritage loss and ecological damage. Using a systematic review of coral reef fishery reconstructions since the 1940s, we show that declining trends in fisheries catch and fish stocks dominate coral reef fisheries globally, due in part to overfishing of schooling and spawning-aggregating fish stocks vulnerable to exploitation. Using a separate systematic review of coral reef tourism studies since 2013, we identify socio-ecological impacts and economic opportunities associated to the industry. Fisheries and tourism have the potential to threaten the ecological stability of coral reefs, resulting in phase shifts toward less productive coral-depleted ecosystem states. We consider whether four common management strategies (unmanaged commons, ecosystem-based management, co-management, and adaptive co-management) fulfil ecological conservation and socioeconomic goals, such as living wage, job security, and maintenance of cultural traditions. Strategies to enforce resource exclusion and withhold traditional resource rights risk social unrest; thus, the coexistence of fisheries and tourism industries is essential. The purpose of this chapter is to assist managers and scientists in their responsibility to devise implementable strategies that protect local community livelihoods and the coral reefs on which they rely

    Dynamics of carbonate sediment production by Halimeda: implications for reef carbonate budgets

    Full text link
    Reef carbonate production and sediment generation are key processes for coral reef development and shoreline protection. The calcified green alga Halimeda is a major contributor of calcareous sediments, but rates of production and herbivory upon Halimeda are driven by biotic and environmental factors. Consequently, estimating rates of calcium carbonate (CaCO3) production and transformation into sediment requires the integration of Halimeda gains and losses across habitats and seasons, which is rarely considered in carbonate budgets. Using seasonal rates of recruitment, growth, senescence and herbivory derived from observations and manipulative experiments, we developed an individual-based model to quantify the annual cycle of Halimeda carbonate and sediment production at Heron Island, Great Barrier Reef. Halimeda population dynamics were simulated both within and outside branching Acropora canopies, which provide refuge from herbivory. Shelter from herbivory allowed larger Halimeda thalli to grow, leading to higher rates of carbonate accumulation (3.9 and 0.9 kg CaCO3 m-2 yr-1 within and outside Acropora canopies, respectively) and sediment production (2.5 versus 1.0 kg CaCO3 m-2 yr-1, respectively). Overall, 37% of the annual carbonate production was transformed into sediments through senescence (84%) and fish herbivory (16%), with important variations among seasons and habitats. Our model underlines that algal rates of carbonate production are likely to be underestimated if herbivory is not integrated into the carbonate budget, and reveals an important indirect pathway by which structurally complex coral habitats contribute to reef carbonate budgets, suggesting that coral losses due to climate change may lead to further declines in reef sediment production.</jats:p

    The trophic spectrum: theory and application as an ecosystem indicator

    No full text
    International audienceTrophic spectra represent the distribution of biomass, abundance, or catch by trophic level, and may be used as indicators of the trophic structure and functioning of aquatic ecosystems in a fisheries context. As a theoretical background, we present a simple ecosystem model of biomass flow reflecting predation and ontogenetic processes. Biomass trophic spectrum of total biomass can be modelled as the result of three major factors and processes: trophic efficiency, transfer kinetics, and extent of top-down control. In the simulations, changes in the spectrum highlight fishing impacts on trophic structure and reveal some functional characteristics of the underlying ecosystem. As examples of potential applications, three case studies of trophic spectra are presented. Catch trophic spectra allow description of structural differences among European fishing areas and periods. Abundance trophic spectra of coral-reef fish assemblages display different trophic signatures, characterizing different reef habitats in New Caledonia and highlighting fishing effects in a marine protected area context. Biomass trophic spectra of demersal resources off Northwest Africa show a shift in ecosystem structure that can be attributed to the rapid increase in fishing pressure during the past few decades. Off Senegal, total biomass remained fairly constant, suggesting a strong top-down control linked to fisheries targeting high trophic level species. Off Guinea, exploitation rates are spread over a wider range of trophic levels, and the total biomass of demersal resources tended to decrease. The trophic spectrum is concluded to be a useful indicator describing and comparing systems in time and space, detecting phase shifts linked to natural or anthropogenic perturbations, and revealing differences in ecosystem functioning. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved
    corecore