447 research outputs found

    Relative efficiency and accuracy of two Navier-Stokes codes for simulating attached transonic flow over wings

    Get PDF
    Two codes which solve the 3-D Thin Layer Navier-Stokes (TLNS) equations are used to compute the steady state flow for two test cases representing typical finite wings at transonic conditions. Several grids of C-O topology and varying point densities are used to determine the effects of grid refinement. After a description of each code and test case, standards for determining code efficiency and accuracy are defined and applied to determine the relative performance of the two codes in predicting turbulent transonic wing flows. Comparisons of computed surface pressure distributions with experimental data are made

    Assessment of an Euler-Interacting Boundary Layer Method Using High Reynolds Number Transonic Flight Data

    Get PDF
    Flight-measured high Reynolds number turbulent-flow pressure distributions on a transport wing in transonic flow are compared to unstructured-grid calculations to assess the predictive ability of a three-dimensional Euler code (USM3D) coupled to an interacting boundary layer module. The two experimental pressure distributions selected for comparative analysis with the calculations are complex and turbulent but typical of an advanced technology laminar flow wing. An advancing front method (VGRID) was used to generate several tetrahedral grids for each test case. Initial calculations left considerable room for improvement in accuracy. Studies were then made of experimental errors, transition location, viscous effects, nacelle flow modeling, number and placement of spanwise boundary layer stations, and grid resolution. The most significant improvements in the accuracy of the calculations were gained by improvement of the nacelle flow model and by refinement of the computational grid. Final calculations yield results in close agreement with the experiment. Indications are that further grid refinement would produce additional improvement but would require more computer memory than is available. The appendix data compare the experimental attachment line location with calculations for different grid sizes. Good agreement is obtained between the experimental and calculated attachment line locations

    Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning

    Get PDF
    The hippocampus and amygdala are essential brain regions responsible for contextual fear conditioning (CFC). The autophosphorylation of alpha calciumcalmodulin kinase II (αCaMKII) at threonine-286 (T286) is a critical step 3 implicated in long-term potentiation (LTP), learning and memory. However, the changes in αCaMKII levels with aging and training in associated brain regions are not fully understood. Here, we studied how aging and training affect the levels of phosphorylated (T286) and proportion of phosphorylated:total αCaMKII in the hippocampus and amygdala. Young and aged mice, naïve (untrained) and trained in CFC, were analysed by immunohistochemistry for the levels of total and phosphorylated αCaMKII in the hippocampus and amygdala. We found that two hours after CFC training, young mice exhibited a higher level of phosphorylated and increased ratio of phosphorylated:total αCaMKII in hippocampal CA3 stratum radiatum. Furthermore, aged untrained mice showed a higher ratio of phosphorylated:total αCaMKII in the CA3 region of the hippocampus when compared to the young untrained group. No effect of training or aging were seen in the central, lateral and basolateral amygdala regions, for both phosphorylated and ratio of phosphorylated:total αCaMKII. These results show that aging impairs the training-induced upregulation of autophosphorylated (T286) αCaMKII in the CA3 stratum radiatum of the hippocampus. This indicates that distinct age-related mechanisms underlie CFC that may rely more heavily on NMDA receptor-dependent plasticity in young age

    Regionally Distinct N -Methyl-D-Aspartate Receptors Distinguished by Quantitative Autoradiography of [ 3 H]MK-801 Binding in Rat Brain

    Full text link
    Quantitative autoradiography of [ 3 H]MK-801 binding was used to characterize regional differences in N -methyl-d-aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [ 3 H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [ 3 H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 Μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 Μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 Μ M . In the presence of added glutamate (3 Μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [ 3 H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [ 3 H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 Μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 Μ M . In the presence of added glycine (1 Μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [ 3 H]MK-801 binding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65616/1/j.1471-4159.1993.tb03295.x.pd

    Molecular targets for therapy in systemic sclerosis

    Get PDF
    Despite significant advances have been made in the recent years regarding organ-specific therapies, there is no approved 'disease-modifying' antifibrotic drug for systemic sclerosis (SSc) available to date. Although non-selective immunosuppressive agents are routinely used to treat patients with SSc, large well-controlled studies are lacking for almost all immunosuppressive agents and further evidence is required for long-term beneficial effects of these drugs. Considering these facts about immunosuppressive agents in SSc and also considering the high mortality of SSc, other therapeutic strategies are urgently needed. Recently an important role of the 5-hydroxytryptamine (5-HT: serotonin) pathway in fibrosis was reported. In this review, we discuss the role of 5-HT in fibrosis and therapeutic potential of this molecule. Besides 5-HT, there are a number of promising targets that have been extensively characterized in recent years. For many of these molecular targets, modifiers are readily available for clinical studies, and often these modifiers are used already in clinical use for other diseases. Results from these studies will show, in how far the promising preclinical results for novel antifibrotic strategies can be translated to clinical practice

    The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat

    Get PDF
    5-APB, commonly marketed as ‘benzofury’ is a new psychoactive substance and erstwhile ‘legal high’ which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in ‘head shops’ and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesized that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [125I]RTI-121 and [3H]ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonized by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB’s pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB’s activity at the 5-HT2B receptor may cause cardiotoxicity

    Differential Patterns of Synaptotagmin7 mRNA Expression in Rats with Kainate- and Pilocarpine-Induced Seizures

    Get PDF
    Previous studies in rat models of neurodegenerative disorders have shown disregulation of striatal synaptotagmin7 mRNA. Here we explored the expression of synaptotagmin7 mRNA in the brains of rats with seizures triggered by the glutamatergic agonist kainate (10 mg/kg) or by the muscarinic agonist pilocarpine (30 mg/kg) in LiCl (3 mEq/kg) pre-treated (24 h) rats, in a time-course experiment (30 min - 1 day). After kainate-induced seizures, synaptotagmin7 mRNA levels were transiently and uniformly increased throughout the dorsal and ventral striatum (accumbens) at 8 and 12 h, but not at 24 h, followed at 24 h by somewhat variable upregulation within different parts of the cerebral cortex, amigdala and thalamic nuclei, the hippocampus and the lateral septum. By contrast, after LiCl/pilocarpine-induced seizures, there was a more prolonged increase of striatal Synaptotagmin7 mRNA levels (at 8, 12 and 24 h), but only in the ventromedial striatum, while in some other of the aforementioned brain regions there was a decline to below the basal levels. After systemic post-treatment with muscarinic antagonist scopolamine in a dose of 2 mg/kg the seizures were either extinguished or attenuated. In scopolamine post-treated animals with extinguished seizures the striatal synaptotagmin7 mRNA levels (at 12 h after the onset of seizures) were not different from the levels in control animals without seizures, while in rats with attenuated seizures, the upregulation closely resembled kainate seizures-like pattern of striatal upregulation. In the dose of 1 mg/kg, scopolamine did not significantly affect the progression of pilocarpine-induced seizures or pilocarpine seizures-like pattern of striatal upregulation of synaptotagmin7 mRNA. In control experiments, equivalent doses of scopolamine per se did not affect the expression of synaptotagmin7 mRNA. We conclude that here described differential time course and pattern of synaptotagmin7 mRNA expression imply regional differences of pathophysiological brain activation and plasticity in these two models of seizures

    Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig

    Full text link
    The goal of this study was to correlate synaptic ultrastructure with transmitter specificity and function in the lateral superior olive (LSO), a nucleus that is thought to play a major role in sound localization. This was accomplished by means of postembedding immunogold immunocytochemistry. Four classes of synaptic terminals were identified in the LSO. They were distinguishable from one another both morphologically and on the basis of their different patterns of immunolabeling for glutamate, glycine, and Γ-aminobutyric acid (GABA). The highest level of glutamate immunoreactivity was found in terminals that contained round vesicles (R) and formed synaptic contacts with asymmetric synaptic junctions. Round-vesicle terminals predominated on small caliber dendrites by a ratio of at least 2:1 over the other classes combined. The thinnest dendrites were typically contacted by R terminals only. The ratio of R terminals to the other types decreased as the caliber of the dendritic profiles they apposed increased so that on the soma, R terminals were outnumbered by at least 2:1 by the other types. Terminals containing flattened vesicles (F) exhibited intense immunoreactivity for both glycine and glutamate, although the glutamate immunolabeling was not as high as that in the R terminals. Flattened-vesicle terminals formed symmetric synaptic contacts with their targets and their distribution was the reverse of that described for R terminals; i.e., they were most abundant on LSO perikarya and fewest on small caliber dendrites. Two terminal types, both containing pleomorphic vesicles and forming symmetric synaptic junctions, were found in far fewer numbers. One group contained large pleomorphic vesicles (LP) and was immunoreactive for both glycine and GABA. The other group contained small pleomorphic vesicles (SP) along with a few dense-core vesicles and labeled for GABA only. The LP terminals were preferentially distributed on somata and large–caliber dendrites, while the SP terminals most often contacted smaller dendrites. Previous work suggests that a large percentage of the R terminals arise from spherical cells in the ipsilateral cochlear nucleus and are excitatory in action. This pathway may use glutamate as a transmitter. Many of the F terminals are thought to originate from the ipsilateral medial nucleus of the trapezoid body and appear to be the inhibitory (glycinergic) terminals from a pathway that originates from the contralateral ear. The origins and functions of LP and SP terminals are unknown, but a few possibilities are discussed along with the significance of cocontainment of neuroactive substances in specific terminal types. © 1992 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50052/1/903230302_ftp.pd
    corecore