78 research outputs found
Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes
To assess how future progress in gravitational microlensing computation at
high optical depth will rely on both hardware and software solutions, we
compare a direct inverse ray-shooting code implemented on a graphics processing
unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU,
and a recent implementation of a parallel tree code suitable for a CPU-based
cluster supercomputer. We examine the accuracy of the tree codes through
comparison with a direct code over a much wider range of parameter space than
has been feasible before. We demonstrate that all three codes present
comparable accuracy, and choice of approach depends on considerations relating
to the scale and nature of the microlensing problem under investigation. On
current hardware, there is little difference in the processing speed of the
single-core CPU tree code and the GPU direct code, however the recent plateau
in single-core CPU speeds means the existing tree code is no longer able to
take advantage of Moore's law-like increases in processing speed. Instead, we
anticipate a rapid increase in GPU capabilities in the next few years, which is
advantageous to the direct code. We suggest that progress in other areas of
astrophysical computation may benefit from a transition to GPUs through the use
of "brute force" algorithms, rather than attempting to port the current best
solution directly to a GPU language -- for certain classes of problems, the
simple implementation on GPUs may already be no worse than an optimised
single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom
Lineage‐based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models
Process‐based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass‐dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species‐level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance‐related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage‐based functional types (LFTs), situated between species‐level trait data and PFT‐level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models
Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544
We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of ≈2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0×10-25 on intrinsic strain and 8.5×10-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spin-down ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method is used extensively in searches of Advanced LIGO and Virgo detector data. © 2017 American Physical Society
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
- …
