263 research outputs found

    Neogene Planktonic Foraminifera of the Indian Ocean (DSDP, Leg 26)

    Get PDF

    Late Pliocene and Quaternary Paleoclimatic Changes, Indian Ocean, DSDP, Leg 26

    Get PDF

    Reproductive Output and Seasonality of Limnoperna fortunei

    Get PDF
    Fil: Boltovskoy, Demetrio. Instituto de Ecología. Genética y Evolución de Buenos Aires (IEGEBA). Universidad de Buenos Aires; ArgentinaFil: Morton, Brian. School of Biological Sciences. University of Hong Kong; ChinaFil: Correa, Nancy. Servicio de Hidrografía Naval. Ministerio de Defensa. Escuela de Ciencias del Mar. Instituto Universitario Naval; ArgentinaFil: Cataldo, Daniel. Departamento de Ciencias Biológicas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires; ArgentinaFil: Damborenea, María Cristina. División Zoología Invertebrados. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Penchaszadeh, Pablo E.. Museo Argentino de Ciencias Naturales Bernardino Rivadavia; ArgentinaFil: Sylvester, Francisco. Instituto para el Estudio de la Biodiversidad de Invertebrados. Facultad de Ciencias Naturales. Universidad Nacional de Salta; Argentin

    Reproductive Output and Seasonality of <i>Limnoperna fortunei</i>

    Get PDF
    Young Limnoperna fortunei mature sexually from 5–6 to ~15 mm. The species is generally dioecious, with approximately equal numbers of males and females and very small (3, but, normally, values range around 6000 ind./m3, showing major fluctuations within short periods, as well as changes as a function of time elapsed post colonization, and availability of substrata suitable for adult occupation. Microcystin-producing cyanobacterial blooms can kill L. fortunei larvae.Facultad de Ciencias Naturales y Muse

    Environmental controls on pteropod biogeography along the Western Antarctic Peninsula

    Get PDF
    Pteropods are abundant zooplankton in the Western Antarctic Peninsula (WAP) and important grazers of phytoplankton and prey for higher trophic levels. We analyzed long-term (1993-2017) trends in summer (January-February) abundance of WAP pteropods in relation to environmental controls (sea ice, sea surface temperature, climate indices, phytoplankton biomass and productivity, and carbonate chemistry) and interspecies dynamics using general linear models. There was no overall directional trend in abundance of thecosomes, Limacina helicina antarctica and Clio pyramidata, throughout the entire WAP, although L. antarctica abundance increased in the slope region and C. pyramidata abundance increased in the South. High L. antarctica abundance was strongly tied to a negative Multivariate El Nino Southern Oscillation Index the previous year. C. pyramidata abundance was best explained by early sea ice retreat 1-yr prior. Abundance of the gymnosome species, Clione antarctica and Spongiobranchaea australis, increased over the time series, particularly in the slope region. Gymnosome abundance was positively influenced by abundance of their prey, L. antarctica, during the same season, and late sea ice advance 2-yr prior. These trends indicate a shorter ice season promotes longer periods of open water in spring/summer favoring all pteropod species. Weak relationships were found between pteropod abundance and carbonate chemistry, and no long-term trend in carbonate parameters was detected. These factors indicate ocean acidification is not presently influencing WAP pteropod abundance. Pteropods are responsive to the considerable environmental variability on both temporal and spatial scales-key for predicting future effects of climate change on regional carbon cycling and plankton trophic interactions

    Occurrence of toxigenic microalgal species and phycotoxins accumulation in mesozooplankton in Northern Patagonian gulfs, Argentina

    Get PDF
    In the Northern Patagonian gulfs of Argentina (Golfo Nuevo and Golfo San José), blooms of toxigenic microalgae and the detection of their associated phycotoxins are recurrent phenomena. The present study evaluated the transfer of phycotoxins from toxigenic microalgae to mesozooplankton in Golfo Nuevo and Golfo San José throughout an annual cycle (December 2014–2015 and January 2015–2016, respectively). In addition, solid‐phase adsorption toxin tracking (SPATT) samplers were deployed for the first time in these gulfs, to estimate the occurrence of phycotoxins in the seawater between the phytoplankton samplings. Domoic acid was present throughout the annual cycle in SPATT samplers, whereas no paralytic shellfish poisoning toxins were detected. Ten toxigenic species were identified: Alexandrium catenella, Dinophysis acuminata, Dinophysis acuta, Dinophysis tripos, Dinophysis caudata, Prorocentrum lima, Pseudo‐nitzschia australis, Pseudo‐nitzschia calliantha, Pseudo‐nitzschia fraudulenta, and Pseudo‐nitzschia pungens. Lipophilic and hydrophilic toxins were detected in phytoplankton and mesozooplankton from both gulfs. Pseudo‐nitzschia spp. were the toxigenic species most frequent in these gulfs. Consequently, domoic acid was the phycotoxin most abundantly detected and transferred to upper trophic levels. Spirolides were detected in phytoplankton and mesozooplankton for the first time in the study area. Likewise, dinophysistoxins were found in mesozooplankton from both gulfs, and this is the first report of the presence of these phycotoxins in zooplankton from the Argentine Sea. The dominance of calanoid copepods indicates that they were the primary vector of phycotoxins in the pelagic trophic web.Fil: D'Agostino, Valeria C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Krock, Bernd. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; AlemaniaFil: Degrati, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Sastre, Viviana. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Santinelli, Norma Herminia. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Krohn, Torben. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; AlemaniaFil: Hoffmeyer, Mónica S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentin

    Molecular Detection of Invasive Species in Heterogeneous Mixtures Using a Microfluidic Carbon Nanotube Platform

    Get PDF
    Screening methods to prevent introductions of invasive species are critical for the protection of environmental and economic benefits provided by native species and uninvaded ecosystems. Coastal ecosystems worldwide remain vulnerable to damage from aquatic species introductions, particularly via ballast water discharge from ships. Because current ballast management practices are not completely effective, rapid and sensitive screening methods are needed for on-site testing of ships in transit. Here, we describe a detection technology based on a microfluidic chip containing DNA oligonucleotide functionalized carbon nanotubes. We demonstrate the efficacy of the chip using three ballast-transported species either established (Dreissena bugensis) or of potential threat (Eriocheir sinensis and Limnoperna fortuneii) to the Laurentian Great Lakes. With further refinement for on-board application, the technology could lead to real-time ballast water screening to improve ship-specific management and control decisions
    corecore