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Abstract
Pteropods are abundant zooplankton in the Western Antarctic Peninsula (WAP) and important grazers of

phytoplankton and prey for higher trophic levels. We analyzed long-term (1993–2017) trends in summer
(January–February) abundance of WAP pteropods in relation to environmental controls (sea ice, sea surface tem-
perature, climate indices, phytoplankton biomass and productivity, and carbonate chemistry) and interspecies
dynamics using general linear models. There was no overall directional trend in abundance of thecosomes,
Limacina helicina antarctica and Clio pyramidata, throughout the entire WAP, although L. antarctica abundance
increased in the slope region and C. pyramidata abundance increased in the South. High L. antarctica abundance
was strongly tied to a negative Multivariate El Niño Southern Oscillation Index the previous year. C. pyramidata
abundance was best explained by early sea ice retreat 1-yr prior. Abundance of the gymnosome species, Clione
antarctica and Spongiobranchaea australis, increased over the time series, particularly in the slope region. Gymno-
some abundance was positively influenced by abundance of their prey, L. antarctica, during the same season,
and late sea ice advance 2-yr prior. These trends indicate a shorter ice season promotes longer periods of open
water in spring/summer favoring all pteropod species. Weak relationships were found between pteropod abun-
dance and carbonate chemistry, and no long-term trend in carbonate parameters was detected. These factors
indicate ocean acidification is not presently influencing WAP pteropod abundance. Pteropods are responsive to
the considerable environmental variability on both temporal and spatial scales—key for predicting future effects
of climate change on regional carbon cycling and plankton trophic interactions.

Pteropods (pelagic snails) are ubiquitous holoplanktonic
zooplankton that are an important link between primary pro-
ducers and higher trophic organisms, major contributors to
organic and inorganic carbon flux, and key indicators of eco-
system health (Foster et al. 1987; Pakhomov et al. 1996; Gir-
aldo et al. 2011; Manno et al. 2017). Both thecosome and
gymnosome pteropods (shelled and nonshelled, respectively)
are common components in the diets of carnivorous zooplank-
ton, fish (such as cod, salmon, and herring), and sea birds in
many regions including the Antarctic and Pacific Northwest
(Hopkins 1987; Pakhomov et al. 1996; Hunt et al. 2008; Gir-
aldo et al. 2011; Sturdevant et al. 2012). All types of pteropods
influence carbon cycling via their grazing and predation and
subsequent fecal pellet production (Lalli and Gilmer 1989;

Bernard and Froneman 2003; Hunt et al. 2008; Bernard
et al. 2012). Additionally, thecosomes produce mucous feeding
webs which aggregate and export particulate organic matter
(Gilmer and Harbison 1986; Manno et al. 2017). Thecosome
pteropods, and larval gymnosomes–which shed their shells
during metamorphosis into adults, also contribute to carbon
cycling through the sinking and dissolution of their aragonitic
shells, which results in the release of carbonate ions thus
influencing the inorganic carbon pump (Lalli and Gilmer
1989; Howard et al. 2011; Manno et al. 2017). It is estimated
that global pteropod biomass is approximately 500 Tg C and
that thecosomes contribute between 20% and 40% of the
global carbonate production and at least 12% of the total car-
bonate flux (Berner and Honjo 1981; Bednaršek et al. 2012a).
The carbonate balance may be disrupted or shifted by ocean
acidification (OA), the anthropogenic addition of carbon diox-
ide to seawater (Doney et al. 2009; Le Quéré et al. 2015). Theco-
some pteropods are considered sentinel indicators of OA due to
the vulnerability of their aragonitic shells dissolving under
increasingly acidic conditions from a changing climate (Orr
et al. 2005; Bednaršek et al. 2014; Manno et al. 2017). Other
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potential effects of climate change on pteropods, particularly
in polar oceans, include sea surface temperature (SST) increase
and sea ice decline (Mackey et al. 2012; Steinberg et al. 2015;
Suprenand et al. 2015a).

The Western Antarctic Peninsula (WAP) is a region of rapid
climate change, with annual mean midwinter air temperature
increasing 5�C (from −11�C to −6�C) since 1950 (Vaughan
et al. 2003; Ducklow et al. 2012b; updated by Stammerjohn,
unpubl.). Regional warming and increases in winds led to a
long-term decrease in sea ice in the WAP, with a later sea ice
advance and earlier retreat, causing a 3 month decrease in
the sea ice season since 1990 (Stammerjohn et al. 2012, 2015).
Since ~ 2008, the WAP has experienced relatively cooler condi-
tions and longer ice seasons, a short-term trend reversal which
has slightly weakened the long-term trends of rapid warming
and shorter ice seasons (Schofield et al. 2017). Interannual vari-
ability and long-term trends in sea ice advance, retreat, and
cover are affected by the southern annular mode (SAM) and El
Niño Southern Oscillation (ENSO). Strong La Niña years, in
combination with a positive Southern Annual Mode (SAM), pro-
duce negative sea level pressure and subsequent anomalously
strong winds from the north, particularly in the spring. These
winds influence the position of basin-scale water masses and
produce earlier (wind-driven) ice-edge retreats, the latter also
facilitating warmer ice-free conditions in spring–summer
(Stammerjohn et al., 2008b, 2012). In regards to OA, no long-
term directional trends were observed in carbonate chemistry
parameters based on a 20-yr time series for the WAP, but OA is
projected to intensify in the region, in combination with
increasing freshwater input, by 2030 (Hauri et al. 2015, 2016).
In contrast to the slight weakening of warming trends along the
mid-WAP region, a recent analysis indicates a moderate cooling
period (−0.47 � 0.25 decade−1) for the northern WAP region
from approximately 1999–2014, which is consistent with the
high decadal-scale variability that the Southern Ocean climate
naturally exhibits (Turner et al. 2016). Nonetheless, quantitative
assessments of observed and projected environmental changes
in the Southern Ocean by Gutt et al. (2015) indicate an anthro-
pogenic warming signal in the WAP that will continue to be
affected by one or more climate processes in the future.

The thecosome Limacina helicina antarctica is one of the
most abundant macrozooplankton species along the WAP
(Ross et al. 2008; Steinberg et al. 2015) and is an important
grazer of phytoplankton in the Southern Ocean (Bernard and
Froneman 2003; Bernard et al. 2012). The gymnosome species
Clione antarctica and Spongiobranchaea australis are the only
two nonshelled pteropods in the WAP and feed exclusively on
local thecosomes, particularly L. antarctica (van der Spoel
1967; Boltovskoy 1974; Lalli and Gilmer 1989; van der Spoel
and Dadon 1999). Feeding studies of Clione spp. indicate they
consume a single thecosome within 2–45 min (Conover and
Lalli 1972). The population dynamics of these groups are
inherently linked through this predator–prey relationship
(Seibel and Dierssen 2003). The thecosome Clio pyramidata is

the largest of the pteropods present along the WAP, although
occurs in relatively smaller abundances (van der Spoel 1967).
Both L. antarctica and C. pyramidata are known to have some
of the highest ingestion rates recorded for Southern Ocean
zooplankton (Hunt et al. 2008).

Prior studies in the Antarctic and elsewhere indicate a variety
of climate and environmental controls on pteropod regional
abundance and distribution (Beaugrand et al. 2012; Mackas and
Galbraith 2012; Loeb and Santora 2013; Howes et al. 2015;
Steinberg et al. 2015; Burridge et al. 2017). In the WAP, strong
La Niña years combined with a positive SAM lead to warmer,
ice-free waters as described above and favor higher abundances
of the thecosome pteropod L. antarctica (Ross et al. 2008; Stein-
berg et al. 2015). Strong La Niña years concomitant with increas-
ingly ice-free regions of the WAP have been suggested to
increase L. antarctica abundance in the southern WAP (Steinberg
et al. 2015). The aragonitic composition of the pteropod calcium
carbonate (CaCO3) shell makes them particularly vulnerable to
OA through shell dissolution (Orr et al. 2005; Lischka
et al. 2011; Bednaršek et al. 2012b; Comeau et al. 2012; Busch
et al. 2014). Bednaršek et al. (2014) showed regions along coastal
California in which aragonite undersaturation ([Ca2+][CO3

2−]/
K0

sp < 1, where K0
sp is the apparent thermodynamic solubility

product of CaCO3), a metric for indicating carbonate ion con-
centration and OA, corresponded to high pteropod shell dissolu-
tion. Thus, OA is another environmental factor potentially
affecting pteropod abundance. However, warming water temper-
atures outweighed the effects of OA on pteropod abundance in
the Pacific Northwest as shown by time series (1960–2009) anal-
ysis, as well as in the Mediterranean (Beaugrand et al. 2012;
Howes et al. 2015). While a number of studies document the
effect of OA on pteropod physiology and shell condition, the
importance of carbonate chemistry as a control on pteropod dis-
tribution has not yet been examined in the Southern Ocean.

This study builds upon previous analyses of WAP pteropod
biogeography and long-term abundance trends by examining
environmental factors that influence abundance of the major
pteropod species along the mid-WAP over the last 25-yr
(1993–2017). We report long-term trends of all major WAP
pteropod taxa in relation to a variety of environmental or ecolog-
ical controls ranging from SST, to sea ice timing and duration, to
predator–prey interactions. This research also represents the first
comparison of long-term carbonate chemistry data to pteropod
abundance in the Southern Ocean, which could identify poten-
tial OA effects. These results will aid in predicting future shifts in
pteropods due to effects of climate change and OA, and the con-
sequences of these shifts on the role of pteropods in biogeo-
chemical cycling and energy transfer in this polar region.

Methods
Study region

The Palmer, Antarctica Long Term Ecological Research (PAL
LTER) study region is located along the middle of the WAP,
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bounded by Palmer Station, Anvers Island (64.77�S, 64.05�W)
in the north and Charcot Island (69.45�S, 75.15�W) approxi-
mately 700 km to the south, and from the Peninsula coast to
the continental slope 200 km offshore (Ducklow et al., 2007,
2012b) (Fig. 1). Sampling of grid stations occurred annually
during PAL LTER summer research cruises (approximately
01 January to 10 February) aboard the MV Polar Duke
(1993–1997) and ARSV Laurence M. Gould (1998 to present).
Grid lines are spaced 100 km apart perpendicular to the WAP,
with stations spaced 20 km apart along each grid line (Waters
and Smith 1992). Before 2009, zooplankton were collected
from all stations from lines 600 to 200. Line 100 was sampled
in 2007 and 2008 but regular sampling of the far south

stations (lines 100, 000, and −100) was not incorporated into
the sampling grid until 2009. The expansion of the gridlines
further south enabled the PAL LTER to include a region with
longer sea ice duration and extent but resulted in decreased
sampling intensity per line throughout the grid (from ~ 10
sampling stations per line pre-2009 to ~ 3 thereafter). For most
analyses, either the entire grid (Full Grid) was considered, or
the grid was divided into latitudinal subregions based on
hydrographic and sea ice conditions as in Steinberg
et al. (2015): “North” (lines 600, 500, and 400), “South” (lines
300 and 200), and “Far South” (100, 000, and −100) (Fig. 1).
For the general linear model (GLM) and other analyses as
appropriate, the “South” and “Far South” data were combined

Fig. 1. Map of PAL LTER study region. Study region (highlighted in box) relative to the Antarctic continent. Shades of gray illustrate bathymetry, with
light gray indicating the continental shelf and dark gray the continental slope and abyssal plain. Shelf break is represented by light/dark gray interface
near 1000 m, extending down to 3000 m (Ducklow et al., 2012b). The continental shelf is roughly 200 km wide and 430 m deep on average. Canyons
that cut into the shelf can reach up to 1000 m deep. PAL LTER grid lines are numbered from 600 to −100, with the far slope (200) and shelf stations indi-
cated for reference (Waters and Smith 1992). Grid lines are distanced 100 km apart and individual stations for a given grid line are 20 km apart. Horizon-
tal lines delineate the “North,” “South,” and “Far South” subregions. Vertical lines indicate the coastal, shelf, and slope subregions. All region divisions
are based on hydrographic and sea ice conditions (Martinson et al. 2008; Stammerjohn et al. 2008a). An, Anvers Island, the location of Palmer Station;
MB, Marguerite Bay; Ad, Adelaide Island; Ch, Charcot Island.
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into “South+” (lines 300, 200, 100, 000, and −100), and the
coast-shelf-slope (on to offshore) gradient as defined by Mar-
tinson et al. (2008) was included. To assign regions for sam-
ples not collected at a standard grid station, sampling
locations were rounded to the nearest standard 100 km grid
line and 20 km grid station.

Pteropod collection and sampling
Pteropod and all other macrozooplankton collection were

performed with a 2-m square frame Metro net (700-μm mesh),
towed obliquely to depths of ~ 120 m (Ross et al. 2008; Stein-
berg et al. 2015). Net depth was determined real time with a
depth sensor attached to the bottom of a conducting wire and
verified with a temperature-depth recorder. A General Oce-
anics flow meter oriented in the center of the net mouth was
used to calculate volume filtered. Pteropods, in addition to the
rest of the whole catch, were sorted by species, subspecies on
board, and the abundance and total biovolume (of fresh,
unpreserved animals) of each species was determined. We ana-
lyzed data for the four major pteropod species identified in
the time series: thecosomes L. antarctica and C. pyramidata and
gymnosomes C. antarctica and S. australis (van der Spoel and
Dadon 1999; Ross et al. 2008). Abundances of the latter two
species were combined (hereafter “gymnosomes”), as earlier in
the time series (1993–2008) S. australis and C. antarctica were
only identified to order level rather than to species. Identifica-
tion of C. pyramidata did not begin until 2004, therefore we
refer to long-term trends in C. pyramidata abundance from
2004 to 2017 only. We present our analyses only as abun-
dance data, as trends in biovolume closely mirrored that of
abundance for all pteropods and some biovolume data were
not available prior to 2009 (see Supporting Informa-
tion Fig. 1).

Effects of day vs. night sampling (i.e., potentially higher
densities in surface waters at night due to diel vertical
migration-DVM) on results were examined using the approach
described in Steinberg et al. (2015) and summarized here. Sun
elevation at the time and location of each tow (Meeus 1998)
was determined with night defined at a sun elevation of
≤ −0.833�. Night densities (n = 250 tows) were compared to
day (n = 1056 tows) (Wilcoxon test, p < 0.05), and the mean
night : day ratio (N:D) was determined for each pteropod spe-
cies with significantly higher night density than day. These
species included L. antarctica (N:D = 1.4) and gymnosomes (N:
D = 1.4) but not C. pyramidata (likely due to low abundance of
C. pyramidata overall reducing their chance of being sampled
in night tows). To allow direct inter-comparison of all tows,
night abundance values were corrected (reduced) by dividing
them by the N:D ratio to calculate a diel-corrected abundance.
Other studies have used diel abundance corrections in their
time series analyses (e.g., Mackas et al. 2001; Atkinson
et al. 2008; Ross et al. 2014).

Environmental parameters and climate indices
Considered environmental parameters affecting pteropod

abundance include: phytoplankton biomass (chlorophyll
a [Chl a]) and primary production (PP), carbonate chemistry,
SST, sea ice cover, and climate indices. Chl a, PP, dissolved
inorganic carbon (DIC), and total alkalinity (TA) were mea-
sured at each station from samples taken within the euphotic
zone, as described in Vernet et al. (2008), Ducklow
et al. (2012a, 2012b), Hauri et al. (2015), and Steinberg
et al. (2015). Discrete measurements of Chl a were integrated
to 100 m and PP to the deepest PP measurement (i.e., bottom
of the euphotic zone). Carbonate chemistry variables includ-
ing calculated pH measured on the total scale and saturation
state for aragonite (Ωar) were determined from averaged values
of DIC, TA, and temperature, salinity, phosphate, silicate, and
pressure collected from the euphotic zone using the CO2SYS
MATLAB version (Van Heuven et al. 2011) and as described in
Hauri et al. (2015). No TA data were collected in 2003–2004.
SST was determined by the NOAA optimal interpolation
(OI) SST analysis (version OI.v2) using in situ and satellite SSTs
as well as SSTs simulated by sea ice cover (Reynolds
et al. 2002). These data are located at http://iridl.ldeo.
columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.
Reyn_SmithOIv2/. SST was averaged over the entire PAL LTER
grid and for the subregions such that ‘North’ was within
200 km south and west of Anvers Island, ‘South’ was within
200 km south and west of Avian Island, and ‘Far South’ was
within 200 km west of Adelaide Island (Fig. 1). Monthly data
were used to determine annual and seasonal means as follows:
spring (September–October–November), summer (December–
January–February), and fall (March–April–May). There were no
winter SST data due to ice cover. SST concomitant with the
time of zooplankton sampling in January was also estimated
via OI.

Sea ice parameters included extent, area, duration, date of
advance, date of retreat, and number of ice days. These data
were derived from satellite imagery (Scanning Multichannel
Microwave Radiometer and Special Sensor Microwave/Imager;
SMMR-SSM/I) as described in Stammerjohn et al. (2008a).
SMMR-SSM/I sea ice concentration data were from the Earth
Observing System Distributed Active Archive Center at the
National Snow and Ice Data Center, University of Colorado
(http://nsidc.org). “Sea ice extent” is the total area within the
sea ice edge, and “sea ice area” is the ocean area covered by sea
ice that excludes open areas inside the ice edge (both in km2).
Annual “ice season duration” is the number of days between
when sea ice first appears in the fall (advance) and last appears
in the spring (retreat). “Sea ice days” are the number of days
between the day of advance and retreat when ice concentration
remained above 15% (Stammerjohn et al. 2008a). Spatial aver-
ages of these sea ice parameters (described above) were deter-
mined for the entire PAL LTER study grid as well as for the
same subregions as described for SST above. All the above data
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in the analyses are available at: http://oceaninformatics.ucsd.
edu/datazoo/data/pallterlter/datasets.

The relationship between pteropod taxon abundance and
climate indices known to influence the pelagic Antarctic Pen-
insula region was analyzed (Ross et al. 2008; Stammerjohn
et al. 2008b; Loeb and Santora 2013; Saba et al. 2014; Stein-
berg et al. 2015). These indices include the ENSO indicator
based on SST (referred to as the multivariate ENSO index
[MEI]; http://www.esrl.noaa.gov/psd/people/klaus.wolterlter/
MEI/) and the SAM (http://www.antarctica.ac.uk/met/gjma/
sam.html) index based on sea level pressure. These climate
indices are seasonally adjusted (e.g., Hurrell 1995). Annual cli-
mate indices were averaged over the entire PAL LTER grid and
for the subregions as described for SST and sea ice above.

In order to test relationships between pteropod taxon abun-
dance and environmental forcing concurrent with the time of
our summer (January/February) cruise sampling we lagged the
data with 0-, 1-, and 2-yr lags. The “summer” sampling season
spans two calendar years (e.g., December 2016, January 2017,
and February 2017) when sampling zooplankton as well as mea-
surements for Chl a, PP, carbonate chemistry, SST, and climate
indices. Therefore, the calendar year for the end of the summer
sampling season was used to define the lag for these parameters.
For example, a significant relationship between L. antarctica
abundance in January 2017 and a 1-yr lag in SST would indicate
that variation in L. antarctica abundance was affected by summer
SST in 2016 (mean of December 2015, January 2016, and
February 2016). In contrast, a 1-yr lag in sea ice extent would
indicate that sea ice extent in the winter of 2016 affected
L. antarctica abundance the following January 2017.

Anomaly calculations
Anomalies are a useful unitless ratio to transform data for

comparison of interannual trends across a variety of plankton
and other hydrographic variables, each with different measure-
ment units and sampling frequencies (Wiebe et al. 2016). The
abundance anomaly (A0

y) for each pteropod taxon and year in

the time series was calculated using the following formula:

A0
y ¼ log10½Ay=A�

where Ay is the mean abundance for year y, and A is the mean
of the yearly means (O’Brien et al. 2011; Steinberg et al. 2015;
Wiebe et al. 2016). Anomalies were calculated for the entire
grid and separately for different subregions. The relative mag-
nitude of each annual anomaly was only compared with
others of the same pteropod taxon within the same subregion.
Annual summer-time anomalies for Chl a, PP, carbonate
chemistry, SST, and annual anomalies for sea ice parameters
were calculated in the same way as pteropod taxon abundance
anomalies. Climate indices are already in anomaly form and
do not have subregional anomalies.

Regional comparison
A three-way ANOVA, with data in annual anomaly form,

was used to determine differences in regional abundance for
each pteropod taxon, as well as broad-scale differences in
taxon abundance between the first (1993–2005) and second
(2006–2017) halves of the time series (North/South+ × coast/
shelf/slope × early/late time series). To assess if the recent
long-term cooling effect along the WAP since 2008 has
affected pteropod abundances, a three-way ANOVA was per-
formed partitioning the time series into the first (1993–2001),
second (2002–2010), and third (2011–2017) periods (Schofield
et al. 2017). Multiple comparisons were adjusted with a Tukey
correction. Note C. pyramidata was not recorded as a separate
category in the time series until 2004.

Comparison of environmental parameters, climate indices,
and species interactions

GLMs, with data in annual anomaly form for the Full
Grid, were developed to explore the effects of covariates on
abundance of different pteropod taxa. The covariates
included annual Chl a, PP, SST, carbonate chemistry, the six
ice variables, two climate indices as well as L. antarctica abun-
dance anomaly (for gymnosome model only). The data
met all assumptions of multiple linear regression including
homogeneity of variance, normally distributed data, fixed
predictors, and no multicollinearity among predictors. Cov-
ariates from the GLMs were assessed for outlying and influ-
ential observations and normality of residuals. Positive
autocorrelation was tested with the Durbin-Watson test
(Neter et al. 1996). Chosen covariates in the models were
based on a priori hypotheses about how those covariates
affect pteropod abundance. Climate indices (MEI and SAM)
and sea ice parameters were chosen as covariates in models
because Steinberg et al. (2015) found strong La Niña years, in
combination with increasingly ice-free regions of the WAP,
corresponded with long-term increases in L. antarctica abun-
dance in the southern WAP. Chl a and PP were used in
model building because Loeb and Santora (2013) suggest
higher L. antarctica abundance in the North Peninsula region
resulted from increased PP. Carbonate chemistry parameters
were used to develop models because many studies have
indicated pteropods are particularly susceptible to OA condi-
tions leading to shell dissolution and metabolism suppres-
sion (Bednaršek et al. 2012b; Maas et al. 2012). The final best
fitting model for each taxon was identified based on the
highest adjusted R2 value (Quinn and Keough 2002). Individ-
ual regressions were determined for environmental variables,
and climate indices (annual anomaly form) against abun-
dance of each pteropod taxon. Comparisons between ptero-
pod taxa were also analyzed with individual regression.
Significance for all statistical analyses was determined at
α = 0.05. All analyses were performed in R statistical frame-
work version 3.2.4 (R Core Team 2013).
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Results
Climatology of pteropod abundance and distribution

L. antarctica was the most abundant pteropod in the WAP
region followed by the gymnosomes (mean of 63 and 1.5 ind.
1000 m−3, respectively) and then C. pyramidata (0.3 ind.
1000 m−3; Table 1). Maximum abundances for all pteropod
taxa were 2–3 orders of magnitude higher than the mean
(Table 1). The highest abundance of L. antarctica and gymno-
somes occurred in the slope region (Table 1; Fig. 2). L. antarc-
tica mean abundance was similar North to South+ but
progressively increased from coast to shelf to slope (Table 1;
Fig. 2a). On average, the highest abundance for any species
and subregion was for L. antarctica in the North slope
(p < 0.001, ANOVA; Table 1). The gymnosomes followed a
similar distribution pattern to L. antarctica, with highest mean
abundance in the slope region (p < 0.001, ANOVA; Table 1)
and no North to South+ gradient change in abundance
(Table 1; Fig. 2b). Although both L. antarctica and gymnosome
abundance progressively increased from coast to slope, there
were some coastal stations with high mean abundance along
the 500 line and in the Far South region (Fig. 2a,b). C. pyrami-
data was the least abundant pteropod with consistently low
densities throughout the WAP (Table 1). In contrast to L. ant-
arctica and gymnosomes, C. pyramidata did not exhibit a
strong coast to slope density gradient but instead an increase
in abundance from North to South+ (p = 0.009, ANOVA;
Table 1; Fig. 2c) with highest densities along the 200 and
300 sampling grid lines (Fig. 2c).

Long-term changes in pteropod abundance and
distribution

Overall, throughout the WAP region (Full Grid), theco-
somes L. antarctica and C. pyramidata abundance oscillated
throughout the time series with no long-term directional
change (p > 0.05, ANOVA), while gymnosome abundance

anomalies increased (p < 0.001, ANOVA) linearly over
1993–2017 (p = 0.007, r2 = 0.27; Fig. 3). There was no signifi-
cant difference in thecosome species abundances between the
mid (2002–2010) to late (2011–2017) periods of the time series
in relation to the recent increase in sea ice since 2008
(p > 0.05, ANOVA). Gymnosomes exhibited a decrease in
mean abundance from the mid to late periods that was signifi-
cant (p = 0.03, ANOVA). High positive anomalies of
L. antarctica usually occurred every ~ 6–7 yr, although spectral
analysis revealed this apparent periodicity was not significant
(p > 0.05, Bartlett’s Kolmogorov–Smirnov statistic; Fuller
1996). The most negative L. antarctica anomaly occurred in
1998 and the most positive in 2011 (Fig. 3a). A marked switch
from negative to positive anomalies occurred in 2008 for
L. antarctica and gymnosomes (Fig. 3a,b), and 2008 was also
the most positive anomaly year for C. pyramidata (Fig. 3c). The
switch was particularly marked for gymnosomes—with the
only prior positive anomaly before this time in 2002—and
abundance anomalies remained positive through the second
half of the time series with one exception (2016).
C. pyramidata abundance anomalies were largely positive from
2006 to 2012, negative from 2013 to 2016, and switched back
to positive in 2017 (Fig. 3c).

Abundance anomalies for all three taxa in the latitudinal
subregions along the North to South gradient of the WAP
largely mirrored those of the Full Grid, but some differences
between subregions were apparent. Oscillating periods of neg-
ative and positive anomalies of L. antarctica were most preva-
lent in the North, and a period of strong positive anomalies
from 2008 to 2012 occurred in the South (Fig. 4a). In 2007 a
strong negative L. antarctica anomaly occurred in the Far
South that was not reflected in the North or South; in con-
trast, a strong positive anomaly in 2011 occurred in all three
latitudinal subregions. The long-term increase in gymnosomes
was significant in each subregion (North: p = 0.002, r2 = 0.3;

Table 1. Pteropod abundances along the WAP for the entire time series (1993–2017). Mean abundance � 1 standard deviation
(SD) and maximum (max). The minimum abundance for all species was zero. The Full Grid (all stations) and subregions are shown.
There are two latitudinal subregions (North and South+; each of which include coast, shelf, and slope stations) and three longitudinal
subregions (coast, shelf, and slope; each of which include North and South+ stations). Full Grid (lines −100 to 600), North (lines
400–600), and South+ (lines −100 to 300). For coast, shelf, and slope designations see Fig. 1. Data include both day and night tows,
with night data corrected for DVM patterns to allow for direct comparison (see Methods). Values are calculated across the entire data
set (i.e., annual means were not calculated first and then averaged for all years). The number of observations, n (in parentheses), is
shown for each subregion.

Taxon

Abundance by region (individuals 1000 m−3)

Full grid North South+ Coast Shelf Slope

Mean SD Max Mean SD Max Mean SD Max Mean SD Max Mean SD Max Mean SD Max

L. antarctica 63 � 162 4038 58 � 107 932 69 � 209 4038 32 � 105 1410 64 � 193 4038 99 � 129 1010

Gymnosomes 1.5 � 3.4 38 1.6 � 3.4 38 1.5 � 3.4 28 0.6 � 1.4 15.2 1.5 � 2.9 27 2.8 � 5 38

C. pyramidata 0.3 � 0.6 5.9 0.2 � 0.5 3.8 0.3 � 0.7 5.9 0.2 � 0.5 2.3 0.4 � 0.7 5.9 0.3 � 0.5 3.1

n for each region (661–1275) (297–679) (364–596) (266–443) (261–582) (172–288)
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South: p = 0.001, r2 = 0.34; Far South: p = 0.02, r2 = 0.37;
Fig. 4b). While gymnosome anomalies in the North and South
subregions switched from negative to positive in 2008, the
switch occurred 3-yr later in the Far South (Fig. 4b). Some dif-
ferences between subregions in patterns of C. pyramidata
abundance anomalies occurred, including at the end of the
time series with a switch in the North between a period of
positive and negative anomalies (2011–2017) vs. in the South
where anomalies remained negative after 2012 (Fig. 4c).

Pteropod abundance increases were strongest along the
WAP slope as well as in the South region. L. antarctica abun-
dance anomalies oscillated between positive and negative in
the coast and shelf, and significantly increased over time in
the slope region (p = 0.04, r2 = 0.12) (Fig. 5a). The largest posi-
tive anomaly in L. antarctica occurred in 2011 in all regions,
and the strongest negative anomaly was in 1998 in the shelf
and slope. A significant long-term increase in gymnosomes
occurred in the shelf and slope regions (shelf: p = 0.01,
r2 = 0.18, slope: p < 0.01, r2 = 0.63) but not the coast (Fig. 5b).
However, the switch from negative to positive anomalies in
2008 described above was apparent in all three subregions
(Fig. 5b). Strong positive gymnosome anomalies occurred con-
sistently throughout the slope region (2008–2015) with the
strongest positive anomaly in 2009. C. pyramidata followed a
similar trend to L. antarctica with an oscillating pattern in
abundance anomalies, although there were no long-term
directional trends in any region (Fig. 5c).

Environmental and climate influences on pteropod
abundance

The best fitting GLM indicated that the MEI index (1-yr
lag) was the best, and only statistically significant, parameter
for predicting L. antarctica variability (Table 2). SAM (1-yr lag),

SST (1-yr lag), sea ice advance (2-yr lag), and aragonite satura-
tion (1-yr lag) were also important parameters in the model,
but not statistically significant. We note that sea ice advance
(1-yr lag) was negatively correlated with MEI (1-yr lag)
(r2 = 0.52, Pearson) and therefore could not be included in the
same model (see also below). The best fitting model for gym-
nosomes indicated L. antarctica abundance (no lag) and later
sea ice advance (2-yr lag) as important, statistically significant,
parameters in predicting gymnosome abundance (Table 2). TA
(1-yr lag) was also important but not a statistically significant
parameter. Model results for C. pyramidata indicated sea ice
retreat (1-yr lag) was the most significant parameter. Sea ice
extent (2-yr lag) and SAM (2-yr lag) also had a significant
effect on C. pyramidata abundance while aragonite saturation
(1-yr lag) did not (Table 2).

Individual regression relationships between predictors of
pteropod abundance identified by the GLM or examples of
others that were significant are shown in Fig. 6. Sea ice was an
important predictor, with later sea ice advance leading to sig-
nificantly higher gymnosome abundance (2-yr later) but not
to significantly higher L. antarctica abundance (Fig. 6a). Years
of early sea ice retreat also led to significantly higher
C. pyramidata abundance the following summer (Fig. 6b).
L. antarctica abundance was significantly negatively related to
MEI (Fig. 6c) and positively related to SST (Fig. 6d) the year
prior. The best fitting GLMs did not identify any carbonate
chemistry parameters as significant in explaining pteropod
abundance, although they accounted for some of the variance
in all the models of best fit (Table 2). C. pyramidata abundance
increased linearly with TA (Fig. 7a). Aragonite saturation, a
potentially strong predictor for shelled pteropods in relation
to OA, was not significantly related to L. antarctica or C. pyra-
midata abundance (Fig. 7b,c).

Fig. 2. Pteropod climatology for the WAP. Log-adjusted mean abundances (individuals m−3) of (a) L. antarctica (1993–2017), (b) Gymnosomes
(1993–2017), and (c) C. pyramidata (2004–2017). Contours are calculated based on quantiles for the data range of each species separately.
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Pteropod predator–prey and other interspecific dynamics
As gymnosomes, C. antarctica and S. australis, are known to

feed almost exclusively on L. antarctica (van der Spoel 1967;
Boltovskoy 1974; Lalli and Gilmer 1989; van der Spoel and
Dadon 1999) simple linear regressions were performed for the
Full Grid with 0-, 1-, and 2-yr lags between predator and prey
(i.e., gymnosome abundance anomalies in 2017 were regressed
against L. antarctica and C. pyramidata abundance anomalies
in 2017, 2016, and 2015). There was a significant positive lin-
ear relationship between L. antarctica vs. gymnosome abun-
dance anomalies in the same year (no lag) (Fig. 8a). There

were no significant relationships between these two taxa using
L. antarctica lags of 1- and 2-yr behind gymnosome abun-
dance, nor between gymnosome and C. pyramidata abun-
dance. There was a significant positive correlation between
the two thecosome pteropod species C. pyramidata and
L. antarctica in the same year (Fig. 8b).

Discussion
Long-term and spatial trends in pteropod abundance

Our results show pteropods are increasing in abundance in
the WAP confirming observations by Ross et al. (2008) and as
projected for other macrozooplankton by Mackey
et al. (2012), with gymnosomes increasing throughout the
entire region while the thecosomes exhibit subregional
increases offshore (L. antarctica) and in the South
(C. pyramidata). The gymnosomes were the only pteropod taxa
to exhibit long-term increases throughout the full WAP, while
L. antarctica increased in abundance along the slope
subregion—particularly in the North, and C. pyramidata abun-
dance increased in the South. Our gymnosome results differ
from those to the north of the PAL LTER study region, where
no long-term increase in the gymnosomes was observed (Loeb
and Santora 2013). This increase along the mid-WAP/PAL
LTER study region for gymnosomes indicates a southward
population increase for these nonshelled pteropod taxa.
Although Ross et al. (2008) observed a long-term increase in
L. antarctica abundance in the North shelf subregion of the
WAP, ours and other more recent time-series analyses no lon-
ger indicate a long-term increase in L. antarctica over the shelf
(Steinberg et al. 2015). Our study reveals for the first time in
the mid-WAP long-term patterns in C. pyramidata, with an
oscillating trend in abundance and no long-term directional
change, similar to the pattern observed north of the PAL LTER
study region (Loeb and Santora 2013).

Pteropod abundance in relation to climate indices and
sea ice

L. antarctica abundance is primarily controlled by the
ENSO cycle, with high abundance following years with a
negative MEI (La Niña), a result supported by prior analyses
in the Antarctic Peninsula region (Ross et al. 2008; Loeb and
Santora 2013; Steinberg et al. 2015). Previous studies empha-
size the importance of the 1997 El Niño subsequently leading
to a strong La Niña in 1999 and high pteropod abundance
(Ross et al. 2008; Loeb and Santora 2013; Steinberg
et al. 2015). This period represents an important regime shift
within the WAP ecosystem and resulted in a marked switch
in pteropod abundance from negative to positive anomalies,
particularly for L. antarctica (Ross et al. 2008). We find this
same trend repeated in 2010, with a strongly negative MEI,
followed by a strong positive anomaly for L. antarctica in
2011. The year 2010 was also marked by a positive SAM and
high SST—conditions that when combined with a negative

Fig. 3. Annual pteropod abundance anomalies for the full WAP grid. (a)
L. antarctica, (b) Gymnosomes, and (c) C. pyramidata. Anomalies were
calculated separately for each species therefore relative height of bars
should only be compared with others of the same species. Regression line
indicates significant linear relationship (Gymnosomes: p = 0.007,
r2 = 0.27).
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MEI promote shorter ice seasons and warmer, ice-free spring–
summers favorable for L. antarctica (Steinberg et al. 2015).
High positive anomalies of gymnosomes and C. pyramidata
also followed these low ice, warmer periods, although the
trend was not as strong as for L. antarctica. Conversely, the
year 2015 was characterized by very high sea ice in addition
to a strongly positive MEI and negative SST, conditions that
resulted in low abundance for all pteropod taxa. These inter-
annual changes support the notion of pteropods as bioindi-
cators given their short generation time (1–3 yr) (Lalli and
Gilmer 1989; van der Spoel and Dadon 1999; Bednaršek
et al. 2012b) and subsequent ability to respond relatively
quickly to changes in the environment (Manno et al. 2017).
In the Ross Sea, L. antarctica was recently identified to toler-
ate temperatures far higher (up to 14�C) than experienced in
their current summer environment (~ 0�C) (Hoshijima
et al. 2017). This thermal tolerance may explain
L. antarctica’s positive relationship with SST and its

expansion into ice-free, warmer waters. In addition, positive
pteropod anomalies continued to occur post-2008, suggest-
ing pteropods have been unaffected by the overall rebound
in sea ice in the WAP since that time (Schofield et al. 2017).

Our study indicates that gymnosome abundance is most
strongly controlled by L. antarctica abundance during the
same summer season, which is described below (see Pteropod
interspecific dynamics). Late sea ice advance (2-yr prior), indica-
tive of a shorter ice season, was also an important parameter
and most likely led to the high gymnosome abundance anom-
aly in 2002 as sea ice advance anomaly was strongly positive
in 2000. Low TA accounted for variance in the gymnosome
model of best fit and may be related to increased summer sea
ice melt and subsequent freshening decreasing TA (Hauri
et al. 2015). The marked switch from negative to positive
abundance anomalies for gymnosomes in 2008 also corre-
sponded with a period of strong positive anomalies in ice
advance starting in 2007. A study in the PAL LTER region in

Fig. 4. Annual pteropod abundance anomalies along the WAP latitudinal gradient. (a) L. antarctica, (b) Gymnosomes, and (c) C. pyramidata. Upper
plots represent the “North” subregion (lines 600, 500, and 400), middle plots the “South” (lines 300 and 200), and bottom plots the “Far South” (lines
100, 000, and −100). Anomalies were calculated separately for each species therefore relative height of bars should only be compared with others of the
same species and subregion. Regression lines for significant linear relationships are shown, regression statistics are as follows: (b) Gymnosomes—North:
n = 25, p = 0.002, r2 = 0.3; South: n = 25, p = 0.001, r2 = 0.34; Far South: n = 11, p = 0.026, r2 = 0.37.
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late summer (March–April 2010) found warmer waters favored
the gymnosome S. australis, which were more abundant in
warm waters influenced by Upper Circumpolar Deep Water
(UCDW) upwelling near the shelf break, suggesting they may
be better physiologically adapted to warmer waters. In con-
trast, C. antarctica was more abundant in cold waters associ-
ated with the coast (Suprenand et al. 2015a). Gymnosome
species were recorded in warmer waters (~ 2�C) in the WAP
indicating their ability to tolerate increasingly subantarctic
conditions (Suprenand et al. 2015b). To the north of the PAL
LTER region, high gymnosome abundance corresponded most
strongly to a negative MEI in the fall and positive SAM during
the summer season (Loeb and Santora 2013), although sea ice
and L. antarctica abundance were not directly included in that
study. While SST was not an important factor in our analysis,
it is worth noting that the 2-yr of high gymnosome abun-
dance (2002 and 2008) were both also strongly positive SST
years. Later sea ice advance may explain long-term increases

in gymnosomes offshore and elsewhere as they are exposed to
more open water later in the season and potentially more time
to feed. Gymnosomes are considered physiologic generalists
and therefore, tolerant of changes in the ocean environment,
particularly with advection of warm water masses in increas-
ingly open water regions of the WAP (Lalli and Gilmer 1989;
Suprenand et al. 2015a). Later sea ice advance 2-yr prior may
also support gymnosome recruitment. While less is known
about the life cycle for Antarctic gymnosomes, their Arctic
counterpart, Clione limacina, has a 2-yr life cycle (Böer
et al. 2006), therefore later sea ice advance and subsequently
more open water may promote high gymnosome recruitment
and high adult abundance 2-yr later. Thus, we propose that
L. antarctica abundance most strongly influences gymnosome
abundance, while late sea ice advance and warmer waters off-
shore have led to their increase.

C. pyramidata was most strongly controlled by sea ice
retreat the year prior, with early retreat preceding the highest

Fig. 5. Annual pteropod abundance anomalies for the WAP coast-shelf-slope gradient. (a) L. antarctica, (b) Gymnosomes, and (c) C. pyramidata. See
Fig. 1 for delineation of coast/shelf/slope subregions. Anomalies were calculated separately for each species therefore relative height of bars should only
be compared with others of the same species and subregion. Regression lines for significant linear relationships are shown, and regression statistics are as
follows: (a) L. antarctica—slope: n = 25, p = 0.04, r2 = 0.12; (b) Gymnosomes—shelf: n = 25, p = 0.01, r2 = 0.18; slope: n = 25, p < 0.01, r2 = 0.63.
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C. pyramidata abundance anomaly of the time series in 2008.
Other factors, such as positive SAM (2-yr lag) and positive sea
ice extent (2-yr lag) were also significant, and in combination
with early sea ice retreat, aligned to promote the high 2008
abundance anomaly. Correspondingly, a late sea ice retreat
from 2013 to 2016 was closely associated with low
C. pyramidata abundance during this same period. Lack of
physiological data for C. pyramidata in the Southern Ocean
makes it difficult to mechanistically link their response to
these changes in their environment (Hunt et al. 2008). We
posit that like L. antarctica, earlier sea ice retreat promotes the
expansion of C. pyramidata further South and could explain
their increased abundance in this subregion. Therefore, early
sea ice retreat is the most important covariate for predicting
C. pyramidata abundance in the future.

Carbonate chemistry
Our study represents the first in the Antarctic to relate

long-term trends in carbonate chemistry seawater conditions
to L. antarctica abundance, addressing a gap in data observa-
tions connecting biological sampling and processes that mea-
sure water carbonate chemistry as emphasized in Manno
et al. (2017). While carbonate chemistry, particularly aragonite
saturation, was expected to be an indicator of shelled ptero-
pod abundance, there were no strong trends identified in rela-
tion to any pteropod species. High TA was positively related to
C. pyramidata abundance but was not identified as an impor-
tant parameter in the GLM. This relationship may potentially
result from the indirect effect of increasing primary productiv-
ity increasing TA (Wolf-Gladrow et al. 2007).

The results from our analysis support the majority of other
long-term analyses around the globe (Ohman et al. 2009;
Beaugrand et al. 2012; Howes et al. 2015) indicating that
there is no current significant effect of carbonate chemistry
parameters (i.e., pH, aragonite saturation, and dissolved car-
bon dioxide) on L. antarctica abundance. In the present case,
carbonate chemistry, particularly aragonite saturation, was
expected to be an indicator of shelled pteropod abundance
as OA has been consistently linked to pteropod shell
integrity—particularly in the subantarctic region where
L. antarctica dissolution was associated with undersaturated
aragonitic upwelling deep water (Bednaršek et al. 2012b).
Currently, the WAP is not significantly undersaturated with
respect to aragonite (Hauri et al. 2015) and other environ-
mental factors (e.g., SST and sea ice) are more influential con-
trols of shelled pteropod abundance. The large spatial and
temporal variability of pteropods and carbonate parameters
in the WAP, and no long-term directional trend in carbonate
parameters suggests longer time series may be required to
detect significant trends in OA (Henson et al. 2010). Along
the WAP, negative MEI strongly increases L. antarctica abun-
dance via an earlier ice edge retreat in spring that allows sur-
face waters to warm longer, thus leading to favorable high
SST for pteropods. SST is also the dominating factor control-
ling Limacina spp. in more temperate regions (Beaugrand
et al. 2012; Howes et al. 2015), as is Chl a (Ohman
et al. 2009).

While we show, based on our 25-yr time series, that shelled
pteropod abundance is not related to carbonate chemistry
conditions indicative of OA, a tipping point may soon be

Table 2. GLM results addressing the effect of environmental, climate, and food on WAP pteropod abundance. Explanatory variables
and statistical scores obtained from the best model, identified by the highest R2 value, among multiple linear regression analyses. Cli-
mate indices: SAM, southern annular mode; MEI, multivariate ENSO index. Test statistics include R2, p values, sample size (n) for the
overall model with data presented in anomaly form, the coefficient (slope) for the regression equation, and the standard error
(SE) associated with the model coefficient.

Parameter n Coefficient SE p

L. antarctica (R2 adjusted = 0.58, p = 0.001) 25

MEI (1-yr lag) −0.34461 0.11752 = 0.009

SST (1-yr lag) 2.98994 1.68443 = 0.09

SAM (1-yr lag) 0.29470 0.18505 = 0.13

Sea ice advance (2-yr lag) 2.04309 1.71175 = 0.25

Aragonite saturation Ωar (1-yr lag) −0.73107 1.81501 = 0.69

Gymnosomes (R2 adjusted = 0.67, p < 0.001) 25

L. antarctica abundance (0-yr lag) 0.21132 0.05044 < 0.001

Sea ice advance (2-yr lag) 1.41962 0.50461 = 0.01

TA (1-yr lag) −6.59681 3.87079 = 0.1

C. pyramidata (R2 adjusted = 0.81, p = 0.002) 14

Sea ice retreat (1-yr lag) −1.87401 0.00865 < 0.001

Sea ice extent (2-yr lag) 0.39672 0.28831 = 0.01
SAM (2-yr lag) 0.06483 0.02442 = 0.03

Aragonite saturation Ωar (1-yr lag) −0.23906 0.19968 = 0.27
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reached as WAP waters are projected to experience prolonged
seasons of aragonite undersaturation as early as 2030 (Hauri
et al. 2016). The fitness cost of repairing shell dissolution for
the thecosomes may not yet influence their abundances possi-
bly because maintenance of other physiologic processes
(e.g., respiration and excretion) is more advantageous. In addi-
tion, as pteropods were sampled only during the summer as
adults, more significant effects of carbonate chemistry on ear-
lier phases in their life cycle may have been missed. This study
provides important baseline data for all pteropod taxa in the
WAP region and emphasizes the importance of closely moni-
toring pteropod abundances and carbonate chemistry over
seasonal time scales in the future as OA is projected to become
more influential.

Pteropod interspecific dynamics
The predator–prey dynamic between the gymnosomes and

L. antarctica as well as the coupling between L. antarctica and
C. pyramidata indicate the importance in understanding ptero-
pod interspecies relationships when considering pteropod bio-
geography and their contributions to biogeochemical cycling.
Our results indicate that gymnosomes primarily occur offshore
following patterns of L. antarctica distribution during this
same year. L. antarctica abundance was the strongest predictor
of gymnosome abundance within the current sampling year.
While stable L. antarctica populations may support current
gymnosome abundances, continued increases in gymnosome
abundance may eventually limit L. antarctica populations.
L. antarctica and C. pyramidata abundance anomalies were

Fig. 6. Effect of environment (sea ice, subdecadal climate oscillations, and SST) on pteropod abundance. (a) Sea ice advance vs. L. antarctica and Gym-
nosome abundance. (b) Sea ice retreat vs. C. pyramidata abundance. (c) MEI vs. L. antarctica abundance. (d) SST vs. L. antarctica abundance. Data plot-
ted are annual anomalies for each year of the time series (1993–2017) for the full grid. Sea ice advance is lagged 2-yr behind pteropod abundance
(e.g., 2017 pteropod annual anomaly is plotted against 2015 sea ice advance annual anomaly). MEI and SST are lagged 1-yr behind L. antarctica abun-
dance (e.g., 2017 L. antarctica annual anomaly is plotted against 2016 MEI). Regression lines for significant linear relationships are shown, regression sta-
tistics are as follows: (a) sea ice advance vs. L. antarctica (filled-circles) and Gymnosomes (empty-circles): n = 25, p = 0.003, r2 = 0.30 (dashed line);
(b) sea ice retreat vs. C. pyramidata (squares): n = 14, p = 0.0003, r2 = 0.64; (c) MEI vs. L. antarctica (circles): n = 25, p < 0.001, r2 = 0.47; (d) SST
vs. L. antarctica (circles): n = 25, p = 0.006, r2 = 0.25.
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correlated throughout the WAP, which indicates similar envi-
ronmental conditions, particularly low sea ice, are important
controls on Antarctic thecosomes. In addition, none of the

best fitting models explaining pteropod abundance in our
study included Chl a or PP, in contrast to the tight trophic
coupling Seibel and Dierssen (2003) identified between phy-
toplankton biomass (Chl a), L. antarctica abundance, and
subsequent shifts in C. antarctica densities. This may be
attributed to differences in sampling scale (localized sam-
pling in McMurdo Sound vs. the large PAL LTER sampling
grid) as well as differences between phytoplankton assem-
blages, with blooms of Phaeocystis antarctica nearly dominat-
ing in the Ross Sea vs. diatoms often occurring in the WAP
(Ducklow et al. 2007; Smith et al. 2007; Schofield

Fig. 8. Interspecific relationships between pteropod taxa abundance. (a)
L. antarctica vs. Gymnosomes; (b) L. antarctica vs. C. pyramidata. Data are
plotted as annual abundance anomalies for each year of the time series
(1993–2017, L. antarctica and Gymnosome; 2004–2017, C. pyramidata)
for the full grid. Gymnosomes and C. pyramidata values correspond to the
same year L. antarctica were collected (i.e., no lags). Regression lines for
significant linear relationships are shown, regression statistics are as fol-
lows: (a) L. antarctica vs. Gymnosomes: n = 25, p < 0.001, r2 = 0.47; (b)
L. antarctica vs. C. pyramidata: n = 14, p = 0.009, r2 = 0.39.

Fig. 7. Relationship of thecosome (shelled) pteropod abundance with
carbonate chemistry parameters, TA, and aragonite saturation (Ωar). (a)
C. pyramidata vs. TA. (b) L. antarctica vs. aragonite saturation. (c)
C. pyramidata vs. aragonite saturation. Data plotted are annual anomalies
for each year of the time series (L. antarctica: 1993–2017; C. pyramidata:
2006–2017) for the full grid. All carbonate chemistry data are lagged 1 yr
behind pteropod abundance. No TA data were collected in 2003–2004
(and subsequently Ωar) and those years were removed from the analysis.
Regression lines for significant linear relationships are shown, regression
statistics are as follows: (a) C. pyramidata (squares) vs. TA: n = 12,
p = 0.004, r2 = 0.53); (b) L. antarctica (circles) vs. aragonite saturation:
n = 22, p > 0.05; (c) C. pyramidata (squares) vs. aragonite saturation:
n = 12, p > 0.05.
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et al. 2017). In addition, the feeding ecology of L. antarctica
is unknown in the Southern Ocean, therefore PP and Chl
a may not adequately capture the prey field density preferred
by L. antarctica.

Conclusions
The effects of climate change along the WAP are changing

the biogeography of pteropods, and shifts in their abundance
and distribution have important implications for regional car-
bon cycling and trophic interactions (Steinberg and Landry
2017). Climate oscillations leading to warmer conditions and
subsequently low sea ice are important controls on shelled
pteropod abundance, with gymnosomes most directly affected
by the availability of its prey, L. antarctica, as well as later sea
ice advance. Thus far pteropods appear to be unaffected by
recent sea ice increases in the mid-WAP since 2008, although
low pteropod abundances in summer 2016 were clearly reflec-
tive of a preceding high ice season. L. antarctica is an important
grazer in the WAP, and future climate regimes that favor
shorter sea ice seasons and warmer, ice-free spring–summer
conditions (e.g., La Niñas, positive SAM) may support their
increased abundance and grazing pressure. Expansion of
L. antarctica can sustain higher trophic organisms including
planktivorous fish and may promote the increase in gym-
nosomes as well as other carnivorous zooplankton
(e.g., amphipods; Steinberg et al. 2015). In addition, Limacina
spp. shells can contribute greater than 50% of the carbonate
flux in the deep ocean south of the Polar Front (Hunt
et al. 2008) and L. antarctica and C. pyramidata export flux may
intensify with their increasing abundance. While OA is not
presently a major factor influencing WAP pteropod abundance,
OA is projected to grow in importance in the coming decades
adding environmental pressure on thecosome shell integrity,
physiology and potentially abundance (Bednaršek et al. 2012b;
Seibel et al. 2012; Manno et al. 2017; Steinberg and Landry
2017). IPCC AR4 model consensus for future warming is strong
throughout the Antarctic (Turner et al. 2009). Therefore, the
WAP, which is currently experiencing the most rapid warming
in the Southern Ocean, represents a natural laboratory in which
gradients of environmental influences can act as analogs for
predicted future change in other regions of the Antarctic. These
regions include ecologically relevant ecosystems such as the
Ross Sea Marine Protected Area where L. antarctica is extremely
abundant. Finally, the relatively short life span of pteropods
enables their use as bioindicators not only for future OA but
also current environmental conditions, particularly shifts in sea
ice and increased SST.
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