8 research outputs found

    L'espace rural au Moyen Âge

    No full text
    Depuis deux ou trois décennies, à la suite des géographes, les historiens du monde rural ont pris l'habitude d'intégrer la spatialisation des phénomènes dans leurs réflexions. Les rapports de pouvoir, les activités productives, les liens avec les écosystèmes engendrent des relations topographiques qui se concrétisent dans des territoires. Ces territoires peuvent avoir été construits par leurs acteurs mêmes : habitats ruraux (du village fortifié à la ferme isolée), parcellaires, terroirs mais ..

    Tumor genomic profiling and TP53 germline mutation analysis of first-degree relative familial gliomas.

    No full text
    International audienceAbout 5% of gliomas occur in a familial context, which suggests a genetic origin, but the predisposing molecular factors remain unknown in most cases. A series of nine familial gliomas were characterized with 1-megabase resolution BAC array-based comparative genomic hybridization (aCGH) together with germline sequence analysis of TP53. This series was compared with a literature series of familial gliomas and a personal series of sporadic gliomas, analyzed by chromosome CGH and aCGH, respectively. No significant difference was noted between the three populations in terms of clinical characteristics, pathologic features, and the most frequent chromosomal alterations, including loss of 1p, 10p, 10q, 13q, and 19q, and gain of 7p, 7q, 16p, 18q, 19p, 19q, 20p, and 22q. However, a genomic region located in 6q was more frequently gained in our series of familial as compared to sporadic gliomas (P=0.028). A germline TP53 mutation was observed in 1/9 cases, which suggests Li-Fraumeni syndrome. Interestingly, the Pro allele in the codon 72 of TP53 was observed in 5/9 tumors. Although familial and sporadic gliomas share very similar cytogenetic quantitative patterns, aCGH is a promising technique for the detection of small genomic differences of potential significance

    Enzyme-controlled, nutritive hydrogel for mesenchymal stromal cell survival and paracrine functions

    No full text
    International audienceAbstract Culture-adapted human mesenchymal stromal cells (hMSCs) are appealing candidates for regenerative medicine applications. However, these cells implanted in lesions as single cells or tissue constructs encounter an ischemic microenvironment responsible for their massive death post-transplantation, a major roadblock to successful clinical therapies. We hereby propose a paradigm shift for enhancing hMSC survival by designing, developing, and testing an enzyme-controlled, nutritive hydrogel with an inbuilt glucose delivery system for the first time. This hydrogel, composed of fibrin, starch (a polymer of glucose), and amyloglucosidase (AMG, an enzyme that hydrolyze glucose from starch), provides physiological glucose levels to fuel hMSCs via glycolysis. hMSCs loaded in these hydrogels and exposed to near anoxia (0.1% pO 2 ) in vitro exhibited improved cell viability and angioinductive functions for up to 14 days. Most importantly, these nutritive hydrogels promoted hMSC viability and paracrine functions when implanted ectopically. Our findings suggest that local glucose delivery via the proposed nutritive hydrogel can be an efficient approach to improve hMSC-based therapeutic efficacy

    PLoS Pathog

    No full text
    Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 mu M, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects
    corecore