2,556 research outputs found
Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics.
A physiologically based pharmacokinetic model for trichloroethylene (TCE) in rodents and humans was calibrated with published toxicokinetic data sets. A Bayesian statistical framework was used to combine previous information about the model parameters with the data likelihood, to yield posterior parameter distributions. The use of the hierarchical statistical model yielded estimates of both variability between experimental groups and uncertainty in TCE toxicokinetics. After adjustment of the model by Markov chain Monte Carlo sampling, estimates of variability for the animal or human metabolic parameters ranged from a factor of 1.5-2 (geometric standard deviation [GSD]). Uncertainty was of the same order as variability for animals and higher than variability for humans. The model was used to make posterior predictions for several measures of cancer risk. These predictions were affected by both uncertainties and variability and exhibited GSDs ranging from 2 to 6 in mice and rats and from 2 to 10 for humans
Statistical analysis of Fisher et al. PBPK model of trichloroethylene kinetics.
Two physiologically based pharmacokinetic models for trichloroethylene (TCE) in mice and humans were calibrated with new toxicokinetic data sets. Calibration is an important step in model development, essential to a legitimate use of models for research or regulatory purposes. A Bayesian statistical framework was used to combine prior information about the model parameters with the data likelihood to yield posterior parameter distributions. For mice, these distributions represent uncertainty. For humans, the use of a population statistical model yielded estimates of both variability and uncertainty in human toxicokinetics of TCE. After adjustment of the models by Markov chain Monte Carlo sampling, the mouse model agreed with a large part of the data. Yet, some data on secondary metabolites were not fit well. The posterior parameter distributions obtained for mice were quite narrow (coefficient of variation [CV] of about 10 or 20%), but these CVs might be underestimated because of the incomplete fit of the model. The data fit, for humans, was better than for mice. Yet, some improvement of the model is needed to correctly describe trichloroethanol concentrations over long time periods. Posterior uncertainties about the population means corresponded to 10-20% CV. In terms of human population variability, volumes and flows varied across subject by approximately 20% CV. The variability was somewhat higher for partition coefficients (between 30 and 40%) and much higher for the metabolic parameters (standard deviations representing about a factor of 2). Finally, the analysis points to differences between human males and females in the toxicokinetics of TCE. The significance of these differences in terms of risk remains to be investigated
Design Space Exploration: Bridging the Gap Between High‐Level Models and Virtual ExecutionPlatforms
International audienceThispaper presents a novel embedded systems modeling framework that fills the gap betweenhigh-‐level AADL models and low-‐level hardware virtual execution platforms. This approach allows refinement and improvement of system performance through exploration of architectures at different levels of abstraction. The aim of the proposed approach is to achieve virtual prototyping of the complete system in order to allow validation to begin early in the design flow, thereby accelerating its development while improving system performances
Population toxicokinetics of benzene.
In assessing the distribution and metabolism of toxic compounds in the body, measurements are not always feasible for ethical or technical reasons. Computer modeling offers a reasonable alternative, but the variability and complexity of biological systems pose unique challenges in model building and adjustment. Recent tools from population pharmacokinetics, Bayesian statistical inference, and physiological modeling can be brought together to solve these problems. As an example, we modeled the distribution and metabolism of benzene in humans. We derive statistical distributions for the parameters of a physiological model of benzene, on the basis of existing data. The model adequately fits both prior physiological information and experimental data. An estimate of the relationship between benzene exposure (up to 10 ppm) and fraction metabolized in the bone marrow is obtained and is shown to be linear for the subjects studied. Our median population estimate for the fraction of benzene metabolized, independent of exposure levels, is 52% (90% confidence interval, 47-67%). At levels approaching occupational inhalation exposure (continuous 1 ppm exposure), the estimated quantity metabolized in the bone marrow ranges from 2 to 40 mg/day
Dielectric Plug-Loaded Two-Port Transmission Line Measurement Technique for Dielectric Property Characterization of Granular and Liquid Materials
There are numerous dielectric property characterization techniques available in the microwave regime each with its own uniqueness, advantages and disadvantages. The two-port completely-filled waveguide (transmission line) technique is a robust measurement approach which is well suited for solid dielectric materials. In this case, the dielectric material can be relatively easily machined to fit inside the waveguide and the subsequent measurement of the scattering parameters of this two-port device renders the dielectric properties of the material filling the waveguide. However, this technique is not well suited for measuring the dielectric properties of granular and liquid materials. These materials are used in the production of various composites which are increasingly replacing the use of metals in many environments. If this technique is directly applied to these types of materials, several approximations either in the measurement apparatus or the formulation must be made. To overcome this problem, this paper describes a modification to this measurement technique utilizing two dielectric plugs which are used to house the granular or the liquid dielectric material. In this approach no approximation to the measurement apparatus is made while the presence of the plugs are fully accounted for in the derivations. Using this technique, the dielectric properties of cement powder, corn oil, antifreeze solution and tap water, constituting low- and high-loss dielectric materials (granular and liquid) were measured. In addition, the important issue of measurement uncertainty associated with this technique is also fully addressed. The issue of optimal choice of various measurement parameters is also discussed as it relates to the measurement uncertainty
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression
THEORETICAL STUDIES OF BILIPROTEIN CHROMOPHORES AND RELATED BILE PIGMENTS BY MOLECULAR ORBITAL AND RAMACHANDRAN TYPE CALCULATIONS
Ramachandran calculations have been used to gain insight into steric hindrance in bile
pigments related to biliprotein chromophores. The high optical activity of denatured phycocyanin, as
compared to phycoerythrin, has been related to the asymmetric substitution at ring A, which shifts the
equilibrium towards the P-helical form of the chromophore. Geometric effects on the electronic structures
and transitions have then been studied by molecular orbital calculations for several conjugation
systems including the chromophores of phycocyanin. phytochrome P,, cations, cation radicals and
tautomeric forms. For these different chromophores some general trends can be deduced. For instance,
for a given change in the gross shape (e.g. either unfolding of the molecule from a cyclic-helical to a fully
extended geometry, or upon out-of-plane twists of the pyrrole ring A) of the molecules under study, the
predicted absorption spectra all change in a simikar way. Nonetheless, there are characteristic distinctions
between the different n-systems, both in the transition energies and the charge distribution, which
can be related to their known differences in spectroscopic properties and their reactivity
- …