60 research outputs found

    Vibrational Stability of NLC Linac and Final Focus Components

    Get PDF
    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.Comment: 3 pages, 8 figures presented at the LINAC 2002 conference, Gyeongju Kore

    Effect of Cooling Water on Stability of NLC Linac Components

    Get PDF
    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.Comment: 6 Pages 13 Figures Presented at The Nanobeam 2002 Workshop (Lausanne Switzerland

    Production of 5-hydroxy-7-methoxy-4-methylphthalide in a culture of Penicillium crustosum.

    Get PDF
    The chemical reactions carried out by microorganisms have been used as a tool in modern chemistry. This paper reports the production of mycophenolic acid and a new phthalide by the endophytic fungus Penicillium crustosum obtained from coffee seeds. The fungus was cultivated in a liquid medium for a period of seven days and after that the culture medium was divided into four treatments: A, B, C and D, to which different organic substances were added. Treatment A was maintained as the control to evaluate the occurrence of biotransformation. Organic acids were added to the culture media of treatments B (ferulic and quinic acids) and C [cinnamic and 3,4-(methylenedioxy) cinnamic acids], and caffeine was added in the treatment D. All these organic compounds were dissolved in DMSO, and the fermentation was maintained for more 13 days, totalizing 20 days. Mycophenolic acid was isolated from the culture with no added acids (treatment A). Mycophenolic acid and a new phthalide, 5-hydroxy-7-methoxy-4-methylphthalide were isolated from treatments B and C, and mycophenolic acid and caffeine (added to the culture medium) were isolated from treatment D. The structures were determined by NMR techniques and confi rmed by MS and MS/MS technique

    The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay?

    Get PDF
    The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies’ and drugs’ responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation

    Estudio de un caso real sobre los cambios fisicoquímicos del aceite de palma crudo (Elaeis guineensis) durante la fritura de akara, albóndigas de pasta de alubia tradicionales, en Brasil

    Get PDF
    The objective of this study was to evaluate the physicochemical changes in crude palm oil during a real case of deep-frying of akara, cowpea-paste balls, fried and sold in the streets of Brazil. Discontinuous frying over five consecutive days, using 5-h frying a day, was performed according to traditional practices. The formation of polar compounds was evaluated by the IUPAC official method and by quick tests based on measures of physical properties, Testo 270 and Fri-check. In addition, 1H-NMR spectroscopy was applied to evaluate physicochemical changes. The results showed that after 15-h frying the total content of polar compounds (TPC) exceeded the limit of 25% established in most of the recommendations and regulations on heated oils. Such a level was reached quickly due to the high content of hydrolytic compounds present in the fresh oil and to the inappropriate use of blends of fresh and used oil in the oil replenishment. The two quick tests presented significantly lower values for TPC than the official method, probably due to the elevated hydrolysis of the fresh oil. In contrast, 1H-NMR results exhibited changes in the fatty acid composition which were similar to those provided by the common GC analysis. The use of crude palm oils of better initial quality and replenishment with fresh oil only are recommended to improve the quality of the oil absorbed by akara.El objetivo de este estudio fue evaluar los cambios fisicoquímicos del aceite de palma crudo durante un caso real de fritura de akara, pasta de alubia con forma redondeada preparada y vendida en la calle en Brasil. akara fue preparada de acuerdo con prácticas tradicionales. Se aplicó fritura discontinua en cinco días consecutivos, utilizando 5 horas de fritura al día. La formación de compuestos polares se evaluó mediante el método oficial IUPAC y mediante pruebas rápidas basadas en medidas de propiedades físicas, Testo 270 y Fri-check. Además, se aplicó espectroscopía 1H-RMN para evaluar cambios fisicoquímicos. Los resultados mostraron que después de 15 horas de fritura el contenido total de compuestos polares (CPT) excedía el límite del 25% establecido en la mayoría de las recomendaciones y regulaciones sobre aceites calentados. Este nivel fue alcanzado rápidamente debido al alto contenido de compuestos hidrolíticos detectados en el aceite fresco y al uso inapropiado de mezclas de aceite fresco y usado utilizadas para la reposición de aceite. Las dos pruebas rápidas presentaron valores significativamente más bajos de CPT que el método oficial, probablemente debido a la elevada hidrólisis del aceite fresco. Por el contrario, los resultados de 1H-RMN exhibieron cambios en la composición de ácidos grasos que fueron similares a los proporcionados por el análisis común de CG. Se recomienda el uso de aceites de palma crudos de mejor calidad inicial y reposición únicamente con aceite fresco para mejorar la calidad de akara

    Pathological Role of Peptidyl-Prolyl Isomerase Pin1 in the Disruption of Synaptic Plasticity in Alzheimer’s Disease

    Get PDF
    Synaptic loss is the structural basis for memory impairment in Alzheimer’s disease (AD). While the underlying pathological mechanism remains elusive, it is known that misfolded proteins accumulate as β-amyloid (Aβ) plaques and hyperphosphorylated Tau tangles decades before the onset of clinical disease. The loss of Pin1 facilitates the formation of these misfolded proteins in AD. Pin1 protein controls cell-cycle progression and determines the fate of proteins by the ubiquitin proteasome system. The activity of the ubiquitin proteasome system directly affects the functional and structural plasticity of the synapse. We localized Pin1 to dendritic rafts and postsynaptic density (PSD) and found the pathological loss of Pin1 within the synapses of AD brain cortical tissues. The loss of Pin1 activity may alter the ubiquitin-regulated modification of PSD proteins and decrease levels of Shank protein, resulting in aberrant synaptic structure. The loss of Pin1 activity, induced by oxidative stress, may also render neurons more susceptible to the toxicity of oligomers of Aβ and to excitation, thereby inhibiting NMDA receptor-mediated synaptic plasticity and exacerbating NMDA receptor-mediated synaptic degeneration. These results suggest that loss of Pin1 activity could lead to the loss of synaptic plasticity in the development of AD
    corecore