258 research outputs found

    Pluto: A Monte Carlo Simulation Tool for Hadronic Physics

    Full text link
    Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. This report gives an overview of the design of the package, the included models and the user interface.Comment: XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    CNS Penetration of Intrathecal-Lumbar Idursulfase in the Monkey, Dog and Mouse: Implications for Neurological Outcomes of Lysosomal Storage Disorder

    Get PDF
    A major challenge for the treatment of many central nervous system (CNS) disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome) is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S). I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a) warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b) may have broader implications for CNS treatment with biopharmaceuticals

    Post-Transcriptional Regulation of 5-Lipoxygenase mRNA Expression via Alternative Splicing and Nonsense-Mediated mRNA Decay

    Get PDF
    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC). The characterization of one of the splice variants, 5-LOΔ3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΔ3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression

    The Accuracy of the Electrocardiogram during Exercise Stress Test Based on Heart Size

    Get PDF
    BACKGROUND: Multiple studies have shown that the exercise electrocardiogram (ECG) is less accurate for predicting ischemia, especially in women, and there is additional evidence to suggest that heart size may affect its diagnostic accuracy. HYPOTHESIS: The purpose of this investigation was to assess the diagnostic accuracy of the exercise ECG based on heart size. METHODS: We evaluated 1,011 consecutive patients who were referred for an exercise nuclear stress test. Patients were divided into two groups: small heart size defined as left ventricular end diastolic volume (LVEDV) <65 mL (Group A) and normal heart size defined as LVEDV ≥65 mL (Group B) and associations between ECG outcome (false positive vs. no false positive) and heart size (small vs. normal) were analyzed using the Chi square test for independence, with a Yates continuity correction. LVEDV calculations were performed via a computer-processing algorithm. SPECT myocardial perfusion imaging was used as the gold standard for the presence of coronary artery disease (CAD). RESULTS: Small heart size was found in 142 patients, 123 female and 19 male patients. There was a significant association between ECG outcome and heart size (χ(2) = 4.7, p = 0.03), where smaller hearts were associated with a significantly greater number of false positives. CONCLUSIONS: This study suggests a possible explanation for the poor diagnostic accuracy of exercise stress testing, especially in women, as the overwhelming majority of patients with small heart size were women

    The Continuous Sample of Working Lives: improving its representativeness

    Get PDF
    This paper studies the representativeness of the Continuous Sample of Working Lives (CSWL), a set of anonymized microdata containing information on individuals from Spanish Social Security records. We examine several CSWL waves (2005-2013) and show that it is not representative for the population with a pension income. We then develop a methodology to draw a large dataset from the CSWL that is much more representative of the retired population in terms of pension type, gender and age. This procedure also makes it possible for users to choose between goodness of fit and subsample size. In order to illustrate the practical significance of our methodology, the paper also contains an application in which we generate a large subsample distribution from the 2010 CSWL. The results are striking: with a very small reduction in the size of the original CSWL, we significantly reduce errors in estimating pension expenditure for 2010, with a p value greater or equal to 0.999

    Nonviral Approaches for Neuronal Delivery of Nucleic Acids

    Get PDF
    The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges

    Complement in the pathogenesis of Alzheimer's disease

    Get PDF
    The emergence of complement as an important player in normal brain development and pathological remodelling has come as a major surprise to most scientists working in neuroscience and almost all those working in complement. That a system, evolved to protect the host against infection, should have these unanticipated roles has forced a rethink about what complement might be doing in the brain in health and disease, where it is coming from, and whether we can, or indeed should, manipulate complement in the brain to improve function or restore homeostasis. Complement has been implicated in diverse neurological and neuropsychiatric diseases well reviewed elsewhere, from depression through epilepsy to demyelination and dementia, in most complement drives inflammation to exacerbate the disease. Here, I will focus on just one disease, the most common cause of dementia, Alzheimer’s disease. I will briefly review the current understanding of what complement does in the normal brain, noting, in particular, the many gaps in understanding, then describe how complement may influence the genesis and progression of pathology in Alzheimer’s disease. Finally, I will discuss the problems and pitfalls of therapeutic inhibition of complement in the Alzheimer brain

    Noninvasive Assessment of Coronary Artery Disease in Women: What’s Next?

    Get PDF
    Significant progress in research has been made in the areas of sex-specific aspects of cardiovascular disease. Despite these advances, coronary artery disease (CAD) is the leading cause of death of women in the Western world. Over the past decade, the focused research on women at risk for ischemic heart disease has helped to clarify our understanding of some of the sex-specific factors, which are important in detecting CAD. In women, the detection and evaluation of physiologically significant CAD is challenging, especially given that traditional tests designed to detect focal areas of coronary artery stenosis are less sensitive and specific in female patients who have a lower prevalence of obstructive coronary disease, greater burden of symptoms, and a high atherosclerotic burden. In this article, we review the available evidence on the role of contemporary cardiovascular imaging techniques in evaluating ischemic heart disease in women
    corecore