62 research outputs found

    Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance.

    Get PDF
    INTRODUCTION: 2018 World Health Organization (WHO) guidelines for the treatment of isoniazid (H)-resistant (Hr) tuberculosis recommend a four-drug regimen: rifampicin (R), ethambutol (E), pyrazinamide (Z) and levofloxacin (Lfx), with or without H ([H]RZE-Lfx). This is used once Hr is known, such that patients complete 6 months of Lfx (≥6[H]RZE-6Lfx). This cohort study assessed the impact of fluoroquinolones (Fq) on treatment effectiveness, accounting for Hr mutations and degree of phenotypic resistance. METHODS: This was a retrospective cohort study of 626 Hr tuberculosis patients notified in London, 2009-2013. Regimens were described and logistic regression undertaken of the association between regimen and negative regimen-specific outcomes (broadly, death due to tuberculosis, treatment failure or disease recurrence). RESULTS: Of 594 individuals with regimen information, 330 (55.6%) were treated with (H)RfZE (Rf=rifamycins) and 211 (35.5%) with (H)RfZE-Fq. The median overall treatment period was 11.9 months and median Z duration 2.1 months. In a univariable logistic regression model comparing (H)RfZE with and without Fqs, there was no difference in the odds of a negative regimen-specific outcome (baseline (H)RfZE, cluster-specific odds ratio 1.05 (95% CI 0.60-1.82), p=0.87; cluster NHS trust). Results varied minimally in a multivariable model. This odds ratio dropped (0.57, 95% CI 0.14-2.28) when Hr genotype was included, but this analysis lacked power (p=0.42). CONCLUSIONS: In a high-income setting, we found a 12-month (H)RfZE regimen with a short Z duration to be similarly effective for Hr tuberculosis with or without a Fq. This regimen may result in fewer adverse events than the WHO recommendations

    Full-length structural model of RET3 and SEC21 in COPI: identification of binding sites on the appendage for accessory protein recruitment motifs

    Get PDF
    COPI, a 600 kD heptameric complex (consisting of subunits α, β, γ, δ, ε, ζ, and β′) “coatomer,” assembles non-clathrin-coated vesicles and is responsible for intra-Golgi and Golgi-to-ER protein trafficking. Here, we report the three-dimensional structures of the entire sequences of yeast Sec21 (γ-COPI mammalian ortholog), yeast Ret3 (ζ-COPI mammalian ortholog), and the results of successive molecular dynamics investigations of the subunits and assembly based on a protein–protein docking experiment. The three-dimensional structures of the subunits in their complexes indicate the residues of the two subunits that impact on assembly, the conformations of Ret3 and Sec21, and their binding orientations in the complexed state. The structure of the appendage domain of Sec21, with its two subdomains—the platform and the β-sandwich, was investigated to explore its capacity to bind to accessory protein recruitment motifs. Our study shows that a binding site on the platform is capable of binding the Eps15 DPF and epsin DPW2 peptides, whereas the second site on the platform and the site on the β-sandwich subdomain were found to selectively bind to the amphiphysin FXDXF and epsin DPW1 peptides, respectively. Identifying the regions of both the platform and sandwich subdomains involved in binding each peptide motif clarifies the mechanism through which the appendage domain of Sec21 engages with the accessory proteins during the trafficking process of non-clathrin-coated vesicles

    Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways

    Get PDF
    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (,23%) than the other two, COPI (,9%) and COPII (,8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes

    A mechanistic role for leptin in human dendritic cell migration: differences between ileum and colon in health and Crohn's disease

    Get PDF
    Dendritic cells (DC) migrate to lymph nodes on expression of C-C motif chemokine receptor 7 (CCR7) and control immune activity. Leptin, an immunomodulatory adipokine, functions via leptin receptors, signaling via the long isoform of receptor, LepRb. Leptin promotes DC maturation and increases CCR7 expression on blood DC. Increased mesenteric fat and leptin occur early in Crohn's disease (CD), suggesting leptin-mediated change in intestinal CCR7 expression on DC as a pro-inflammatory mechanism. We have demonstrated CCR7 expression and capacity to migrate to its ligand macrophage inflammatory protein 3β in normal human ileal DC but not colonic or blood DC. In CD, functional CCR7 was expressed on DC from all sites. Only DC populations containing CCR7-expressing cells produced LepRb; in vitro exposure to leptin also increased expression of functional CCR7 in intestinal DC in a dose-dependent manner. In conclusion, leptin may regulate DC migration from gut, in homeostatic and inflammatory conditions, providing a link between mesenteric obesity and inflammation

    The feeling of me feeling for you: Interoception, alexithymia and empathy in autism.

    Get PDF
    Following recent evidence for a link between interoception, emotion and empathy, we investigated relationships between these factors in Autism Spectrum Disorder (ASD). 26 adults with ASD and 26 healthy participants completed tasks measuring interoception, alexithymia and empathy. ASD participants with alexithymia demonstrated lower cognitive and affective empathy than ASD participants without alexithymia. ASD participants showed reduced interoceptive sensitivity (IS), and also reduced interoceptive awareness (IA). IA was correlated with empathy and alexithymia, but IS was related to neither. Alexithymia fulfilled a mediating role between IA and empathy. Our findings are suggestive of an alexithymic subgroup in ASD, with distinct interoceptive processing abilities, and have implications for diagnosis and interventions

    The dynamics of expanding mangroves in New Zealand

    Get PDF
    In contrast to the global trend of mangrove decline, New Zealand mangroves are rapidly expanding, facilitated by elevated sediment inputs in coastal waters as a consequence of large-scale land use changes following European settlement. New Zealand mangroves are at the southern limit of the global mangrove extent, which limits the tree height of Avicennia marina var. australasica, the only mangrove species present. Mangroves in New Zealand thrive in the sheltered environments of infilling drowned river valleys with abundant supply of fine terrigenous sediments, showing various stages of mangrove succession and expansion dynamics. Bio-physical interactions and carbon dynamics in these expanding temperate mangrove systems show similarities to, but also differ from those in tropical mangrove forests, for instance due to the limited height and complexity of the mangrove communities. Likewise, ecosystem services provided by New Zealand mangroves deviate from those offered by tropical mangroves. In particular, the association of mangrove expansion with the accumulation of (the increased supply of) fine sediments and the consequent change of estuarine ecosystems, has provoked a negative perception of mangrove expansion and subsequently led to mangrove clearance. Over recent decades, a body of knowledge has been developed regarding the planning and decision making relating to mangrove removal, yet there are still effects that are unknown, for example with respect to the post-clearance recovery of the original sandflat ecosystems. In this chapter we discuss the dynamics of New Zealand’s expanding mangroves from a range of viewpoints, with the aim of elucidating the possible contributions of expanding mangroves to coastal ecosystem services, now and in the future. This chapter also reviews current policies and practice regarding mangrove removal in New Zealand and addresses the (un)known effects of mangrove clearance. These combined insights may contribute to the development of integrated coastal management strategies that recognise the full potential of expanding mangrove ecosystems

    Breast cancer survival among young women: a review of the role of modifiable lifestyle factors

    Get PDF
    corecore